
Proof Assistants and Foundation of Mathematics

Masahiko Sato
Graduate School of Informatics, Kyoto University

SCSS 2024
Tokyo University of Science

August 30, 2024

Plan of the talk

Part I Introduction
Part II Mathematics as social activity
Part III Formalization of mathematics
Part IV Future of mathematics and proof assistants
Part V Conclusion

Part I

Introduction

Present, Past and Future

Present, Past, Future = 現在，過去，未来 = Genzai, Kako, Mirai

mypath is winding = Mayoi Michi, Kune Kune

Lostway(Mayoi Michi in Japanese) : Lyrics, Compostion and
Singing all done by Machiko Watanabe. released in 1977.

Paul McCartney recorded The Long and Winding Road. in 1970.
Lyrics, Composition and Singing all done py Paul.

The Long and Winding Road had a goal (which belongs to future),
but Lostway had no goal.

Context and environment

A
A
A
A
A
AU

�
�
�

�
�
��

Past

s Present

Future

A
A
A
A
A
AU

�
�

�
�
�
��

History creates me and I create history.
Context = History
An environment = The current part of a context.
To live is to experience the interaction between I and the
environment surrounding me.

Context

History created me and I will create history, but history also
created you and you will also create history.

It is crucial to observe that each of us (you and I) were created
(born) and raised under different contexts (including birth places,
mother lanuages and DNA).

This means that each of us is always carrying a personal context
(personal history) which is unique to each person, and the context
changes as time goes by.

We apply this idea to mathematics and to mathematicians in this
talk.

My history

Below I list a tiny bit of my personal context.

I was born in Kobe (神戸), Japan, on May 1, 1947.
I studied mathematics and graduated from the University of
Tokyo.
My teachers, when I was 15-28 years old, include
Sin Hitotumatu (一松信), Nobuo Yoneda (米田信夫)，
Mikio Sato (佐藤幹夫) and John McCarthy.
My original field was mathematics(object-level) but gradually
shifted to metamathematics (meta-level), and then to
computer science (meta-meta-level).
In 1975, I learned the concept of proof assistant from John
McCarthy. He statyed in Kyoto for 3 months, as a visiting
Professor of Kyoto University. I was Assistant Professor at
RIMS then.

My stand point

The title of my talk is:

Proof Assistants and Foundations of Mathematics

But, it has a subtitle:

Language and Mathematics

We can communicate each other only through a language. Since
this is so obvious, we often forget this context.

My stand point is:

Every mathematical object is a linguistic object.

Symbolic Computation

My stand point is:

Every mathematical object is a linguistic object.
A quotation from the home page of SCSS 2024:

Symbolic computation is the science of computing with
symbolic objects (terms, formulae, programs, representa-
tions of algebraic objects, etc.).

The above quotation is an open definition. Because, it contains
the open word etc. which can be filled in by other closed words
such as proofs. If one accepts my stand point, one obtains a closed
definition:

Symbolic computation is the science of computing with
mathematical objects.

Proof Assistant

A proof assistant is an interactive software tool which we use to
write correct formal proofs on a computer.

In this sense, a proof assistant does meta-symbolic computation
dealing with metamathematical objects.

In the long history of mathematics, proof assistants appeared only
recently after the invention of computers.

Logic and Computation

Logic and Computation, which is more basic?

Please ask yourself.

1 Logic is more basic than Computation.
2 Computation is more basic than Logic.
3 I have no idea.

Part II

Mathematics as social activity

Mathematics as social activity

In Japan, we have The Mathematical Society of Japan.

USA has The American Mathematical Society and its home page
says:

The American Mathematical Society is dedicated to ad-
vancing research and connecting the diverse global math-
ematical community through publications, meetings and
conferences, MathSciNet, professional services, advocacy,
and awareness programs.

SCSS 2024 is also such an activity.

Journal publications

As seen in the previous slide, journal publications are an instance
of acitivity of mathematicians.

A paper submitted to a peer-reviewed journal is read and checked
by a number of reviewers before publication.

In the case of a mathematical paper, a necessary condition for the
acceptance of the paper for publication is that all proofs given in
the paper are correct.

However, even if the paper contain some errors, human reviwers
may fail to detect them.

In the late 1950s, John McCarthy had the idea that the above
problem can be avoided by letting computer do the job of proof
checking.

Quotation from McCarthy

(1961: A basis for mathematical theory of computation)

Proof-checking by computer may be as important as proof
generation. It is part of the definition of formal system that proofs
be checkable.

Because a machine can be asked to do much more work in
checking a proof than can a human, proofs can be made much
easier to write in such systems. In particular, proofs can contain a
request for the machine to explore a tree of possibilities for a
conventional proof.

The potential applications for computer-checked proofs are very
large. For example, instead of trying out computer programs on
test cases until they are debugged, one should prove that they have
the desired properties.

Quotation from McCarthy (cont.)

(1961: A basis for mathematical theory of computation)

The usefulness of computer checked proofs depends both on the
development of types of formal systems in which proofs are easy to
write and on the formalization of interesting subject domains.

It should be remembered that the formal systems so far developed
by logicians have heretofore quite properly had as their objective
that it should be convenient to prove metatheorems about the
systems rather than that it be convenient to prove theorems in the
systems.

Part III

Formalization of mathematics

What is formalized mathematics?

A formalized mathematics is written in a formal language.
Syntax of the language is formally given by, e.g., a
context-free grammar.
Mathematical objects are represented by linguistic entities
such as nouns.
Mathematical assersions (propositions) are represented by
formulas, which are also linguistic objects.
Proofs are also formally written in the formal language.
Given any formula and (formal) proof, it is primitive
recursively decidable if the proof proves the formula.

What is formalized mathematics? (cont.)

A crucial property of a formalized mathematics is that it can be
implemented using only finitary objects (in the sense of Hilbert)
and these finitary objects can be constructed and manipulated by
applying computable functions.

Computable functions are also (intensional) finitary objects and
they are well-understood informally.

Why formalize mathematics?

Motivations coming from mathematics.
Motivations coming from computer science.

Why formalize mathematics? (cont.)

Motivations coming from mathematics
Proof of unprovability of a proposition.
Consistency proof.
Gödel’s incompleteness theorem.
Reverse mathematics.
Zermelo-Fraenkel set theory.

These motivations are mainly theoretical. Mathematicians usually
talk about formalized mathematics but not work in it.

Formalization of logic is important here.

Why formalize mathematics? (cont.)

Motivations coming from computer science
Verification of proofs.
Verification of programs.
Constructive programming.
Formalization of metamathematics.

These motivations are mainly practical. Some computer scientists
are interested in creating a computer environment for doing
mathematics in it.

Cf., Isabelle, Coq, Agda, Lean etc.

Formalization of computation is important here.

History of formalization

Frege (Begriffsschrift, 1879) Higher order logic
Russell (Principia Mathematica (with Whitehead), 1910) Type
theory
Brouwer (Intuitionism) → Heyting
Hilbert (Formalism) → Gödel, Gentzen
Zermelo-Fraenkel (Set theory)
Church (λ-calculus, Simple theory of types)
Turing (universal Turing machine, decision problem)
McCarthy (1961: A basis for mathematical theory of
computation)
de Bruijn (Automath 1967 −)
Mizar (1973 −), Coq, Isabelle, Theorema, Agda, Lean

Part IV

Future of mathematics and proof assistants

Mathematicians who influenced me

Many mathematicians, including Dana Scott, Bruno Buchberger
and Piet Hut (Physicist at IAS and study Husserlian
phenomenology), influenced me a lot.

But, here, I will talk about:

McCarthy, Martin-Löf, Yoneda and Mikio Sato.

This is because the way in which they do mathematics, directly
had some influences on the design of my new proof assistant which
I call NM (for Natural Mathematics).

This is also the case for Buchberger, but omitted him since he
already showed his way of doing mathematics on the first day of
this conference.

John McCarthy (1927 - 2011)

McCarthy developed Lisp which has the following properties never
or rarely found in other programming languages.

1 Lisp used symbolic expressions, which has binary tree
structure, to represent both syntax and data of Lisp.

2 Introduced quote which provides quotation mechanism to
Lisp.

3 Lisp’s interpreter can be written succinctly in Lisp
(meta-circular interpreter).

He also introduced the notion of first-oreder abstract syntax.

He was also intersted in the representation of someone knowing
something using modal logic. This was the topic of my Ph.D
thesis.

Tresidder Union, Stanford University, 1977

Vera Watson (John’s wife)，John McCarthy, Satoru Takasu, S

Per Matin-Löf (1942 -)

Per Matin-Löf introduced ITT (Intuitionistic Type Theory, 1984),
which later became bases of several proof assistants including Coq
and Agda.

In the year ITT book was published, Matin-Löf came to Japan at
the invitation of ICOT where the 5th Generation Computer
Systems project was carried out.

I met him on this occasion and he gave me a copy of just
published ITT book.

Later, in 2004, I invited him to come to Kyoto Univerity for 3
months.

He is also a philosopher and deeply understands Frege’s philosophy.

RIMS, Kyoto University, 2004

S and Per Martin-Löf

Nobuo Yoneda (1930 - 1996)

Yoneda is famous for his Yoneda Lemma which is a fundamental
lemma in category theory.

Yoneda and I came to know each other when I was 15. This was
only by postal communication.

Incidentallay, Hitotumatu (一松) and I also came to know each
other when I was 15 through postal communicatio.

Both Yoned and Mikio Sato (佐藤幹夫) graduated from
Mathematics Department of the University of Tokyo in 1952.

Oka and Serre, Nara Hotel, August 1955

Shigeo Nakano，J.P. Serre [28 years old．Awarded the Fields medal
jointly with Kodaira]

Akizuki (a class mate of Oka at the Third High School in Kytoto)
Oka[54]，Hitotumatu[29]

This photo was taken by Yoneda[25]

I got a Masters Degree in 1973

I am the shortest in the second row,
just behind Iyanaga(彌永)，the oldest (66) in the photo.

Kodaira(小平邦彦) is the shortest person in the front row.

A remark about Iyanaga

Iyanaga was a teacher of ipressive numbers of good
mathematicians including :

Kiyoshi Ito, Kodaira, Mikio Sato, Nobuo Yoneda, Gaisi
Takeuti and Satoru Takasu.

International Sympsium on Algorithmic Languages
CWI, Amsterdam, 1981

Dana Scott also attended the symposium.

Nobuo Yoneda and S

Mikio Sato (1928 - 2023)

He was a member of my Ph.D degree examination committee.
Other two members were Sin Hitotumatu (chair) and Satoru
Takasu.

He introduced hyper-function, D module, prehomogenious vector
space etc. into mathematics

He stressed the importance of using algebraic aproach (which
mainly rely on reasoning with equation) in other area of
mathematics including analysis.

He refused to be called a philosopher, but I think he is a great
philsopher.

He is a natural mathematician.

Drawbacks of current proof assistants

Here, I discuss only proof assistants based on type theory. Set
theory has more serious drawbacks. I just remark here that
formalization of both type theory and set theory started after
Russel Paradox was found in one of Frege’s book.

There are many type theories, but they all have the following two
serious drawabacks, in my opinion.

1 So far, no type-theorist could define concept of type. Namely,
no one could answer the question: “What is type?”.

2 Type theories handle only terminating computaion. Thus, you
cannot write non-terminating programs in type theory.

A proof assistant is a softare which should keep on running as long
as its users wish to use it. So, all the proof assistants are
implemented using languages which support non-terminating
computation. A proof assistant cannot bootstrap itself.

How and What

This extension is based on the following observations.

In each item below, the word set in this color represents some
action to be performed on the following word set in this color.

How and what [Mikio Sato]
Verb and noun [J.L. Austin’s speech act]
Function and argument [Gotolob Frege and Martin-Löf]
Dynamic and static [Lisp and scheme]
Proof and theorem [Frege, Gentzen, Martin-Löf]
Definition and class/object [definition is a speech act (S)]
Meta-Level and object-level [Wolfram, Buchberger and S]

Note that the observation was done at meta-meta-level
(meta-meta-meta-level in the case of Definition).

Part V

Conclusion

Coclusion

I cannot getaway from my Present since I am here now

I cannot also getway from my Past, since it is always with me as
my own personal history, wich I call my Context.

But, fortunately (or, unfortunately), my Future is yet to come, and
has possibilities of making it as I wish to be.

So, I always have a goal in my mind and trying to get to the
Future in which the goal will come true.

