SCSS 2024 WiP

Pre-Proceedings of the
10!" International Symposium on
Symbolic Computation in Software Science

Works in Progress Workshop

Tokyo, Japan, August 28-30 2024

Edited by

Katsusuke Nabeshima Tokyo University of Science
Stephen M. Watt University of Waterloo

Copyright © 2024 for the individual papers by the papers’ authors.
Copyright © 2024 for the volume as a collection by its editors.

This volume and its papers are published under the Creative Commons License Attribution 4.0
International (CC BY 4.0).

Preface

SCSS 2024 is the 10th edition of the 10th International Symposium on Symbolic Computation in Software
Science. The symposium aims to promote research on the theoretical and practical aspects of symbolic
computation in software science in the context of modern computational and artificial intelligence
techniques. It will be held in Tokyo from August 28 to 30.

The symposium has three main types of presentations:

« the keynote and invited talks
« formal full papers
« works in progress.

This volume contains the record of the Work in Progress of SCSS 2024. The formal full papers and the
abstracts of the keynote and invited talks appear in the Springer Lecture Notes series as LNAI 14991.

What is the meaning of the symposium name “symbolic computation in software science”? Symbolic
computation is the science of computing with symbolic objects (terms, formulae, programs, represen-
tations of algebraic objects, and so on). Powerful algorithms have been developed during the past
decades for the significant subareas of symbolic computation: computer algebra and computational logic.
These include resolution proving, model checking, provers for various inductive domains, rewriting
techniques, cylindrical algebraic decomposition, Grébner bases, characteristic sets, and telescoping for
recurrence relations. These algorithms and methods have been successfully applied in various fields.
Software science has the goal of applying scientific principles in the development of software and
covers a broad range of topics in software construction and analysis. One of the main objectives is to
enhance software quality. The SCSS meetings bring these fields together, allowing the ideas from each
to enhance the other.

Over the years, the scope of SCSS has evolved, incorporating new research themes that drive progress
in symbolic computation in software science. Some of the recurring topics in the SCSS meetings have
been:

+ Theorem proving methods and techniques

+ Algorithm synthesis and verification

+ Formal methods, including for the analysis of network security
+ Complexity analysis and termination analysis of algorithms

« Extraction of specifications from algorithms

+ Generation of inductive assertions for algorithms

+ Algorithm transformations

« Component-based programming

« Symbolic methods for semantic web and cloud computing,.

The present instance of SCSS builds on these themes.

The abstracts and papers presented here emphasize symbolic computation, formal systems, and appli-
cations of formal methods. After fifteen years, the foundational framework stands firm, continually
incorporating innovative developments in SCSS domains.

August 2024 Katsusuke Nabeshima
Stephen M. Watt

Organization

SCSS Steering Committee as of August 2023

Adel Bouhoula
Bruno Buchberger
Hoon Hong
Tetsuo Ida

Laura Kovacs
Temur Kutsia
Mohamed Mosbah
Michael Rusinowitch
Masahiko Sato
Carsten Schneider
Dongming Wang

Arabian Gulf University, Bahrain

RISC Johannes Kepler University, Austria
North Carolina State University, USA
University of Tsukuba, Japan

TU Wien, Austria

RISC Johannes Kepler University, Austria
LABRI, France

INRIA, France

Kyoto University, Japan

RISC Johannes Kepler University, Austria
Beihang University, China, and CNRS, France

SCSS 2024 Organizing Committee

General Chair
Program Committee Chair
Local Arrangements Chair

Program Committee

David Cerna
Changbo Chen
Rachid Echahed
David Jeffrey
Cezary Kaliszyk
Yukiyoshi Kameyama
Laura Kovécs
Temur Kutsia
Christopher Lynch
Yasuhiko Minamide
Julien Narboux
Wolfgang Schreiner
Sofiéne Tahar
Stephen Watt (chair)
Lihong Zhi

Tetsuo Ida U. Tsukuba
Stephen Watt U. Waterloo
Katsusuke Nabeshima Tokyo U. of Science

Czech Academy of Sciences, Czechia
Chinese Academy of Sciences, China
CNRS and University of Grenoble, France
University of Western Ontario, Canada
University of Innsbruck, Austria
University of Tsukuba, Japan

TU Wien, Austria

RISC Johannes Kepler University, Austria
Clarkson University, USA

Tokyo Institute of Technology

CNRS and Université de Strasbourg, France
RISC Johannes Kepler University, Austria
Concordia University, Canada

University of Waterloo, Canada

AMSS Chinese Academy of Sciences, China

Local Arrangements Committee

Yuki Ishihara

Katsusuke Nabeshima (chair)

Yosuke Sato
Hiroshi Sekigawa
Akira Terui

Nihon University, Japan

Tokyo University of Science, Japan
Tokyo University of Science, Japan
Tokyo University of Science, Japan
University of Tsukuba, Japan

Sponsors

SCSS 2024 gratefully acknowledges the support of our sponsors,
the Kayamori foundation of informational science advancement and Maplesoft.

Mathematics « Modeling » Simulation
A Cybernet Group Company

Table of Contents

Improving LLM-based code completion using LR parsing-based candidates

Atique, Choi, Sasano, MOOMot 1
Faster bivariate lexicographic Groebner bases modulo x*

Dahian ... 7
Some applications of Chinese Remainder Theorem codes with error-correction

ElHOtt, SChoSt. . oo 13
Functional decomposition of sparse polynomials (short talk abstract)

Glesbrecht. . ..o 19

Towards trajectory planning of a robot manipulator with computer algebra using Bézier curves for obstacle
avoidance

Hatakeyama, Terui, MIKAWaottt e 21
Algebraic (non) relations among polyzetas

Hoang Ngoc Minh 28
An e-origami artwork of a big wing crane

Ida. 34
The geometry of N-body orbits and the DFT (extended abstract)

JOm . 46
Grobner basis computation via learning

Kera, Ishihara, Vaccon, Yokoyamao i e 51
Solving estimation problems using minimax polynomials and Grobner bases

Kuramochi, Terul, MiKawao e e 57
First-order theorem proving with power maps in semigroups

Lin, Padmanabhan, Zhang 63
Software for indefinite integration

Norman, Jeffreyo 74

Towards trajectory planning for a 6-degree-of-freedom robot manipulator considering the orientation of the
end-effector using computer algebra

Okazaki, Terui, MIKAWAottt e e e e 84
Methods for solving the Post correspondence problem and certificate generation

Omori, MINAMIAE . . . o oot e e e e e e e 92
A stable computation of multivariarte apporximate GCD based on SVD and lifting technique

SANUKI . . ot 99

An optimized path planning of manipulator with spline curves using real quantifier elimination based on
comprehensive Grébner systems

Shirato, Oka, Terul, MIKAWAottt e e 105
Reasoning about the embedded shape of a qualitatively represented curve

Takahashi 113

Improving LLM-based Code Completion Using LR
Parsing-Based Candidates

Md Monir Ahammod Bin Atique®!, Kwanghoon Choi®*, Isao Sasano? and Hyeon-Ah Moon®

'Chonnam National University, Gwangiju 61186, South Korea
?Shibaura Institute of Technology, Tokyo, Japan
Sogang University, Seoul, South Korea

Abstract

Programmers often use syntax completion and code suggestion features. Our methodology enhances code com-
pletion by combining structural candidate information from LR parsing with LLMs. These structural candidates
are utilized to compose prompts so that ChatGPT can predict actual code under the specified structure. Tested
on Small Basic and C benchmarks, this approach offers textual suggestions rather than just structural ones,
showing nearly 50% prediction accuracy for Small Basic programs. While effective for Small Basic, we report that
challenges remain with C11 programs.

Keywords
Syntax Completion, Large Language Model, LR parsing, Integrated Development Environments

1. Introduction

Many integrated development environments (IDEs), such as Visual Studio Code, provide syntax com-
pletion features that ease the editing process for various programming languages. Developers of IDEs
should prioritize incorporating syntax completion for each supported language. To make the process
more efficient and cost-effective, it is beneficial to approach this implementation methodically, guided
by a detailed specification.

An analytic approach is based on syntax analysis using the well-developed LR parsing theory [1].
Sasano & Choi [2] defined code completion candidates «y for a prefix a8 as suffix sentential forms
derived from a start symbol S if there is a production A — 7 in the LR grammar so that 3+ can be
reduced to a nonterminal A. Figure 1 describes this idea.

S
@Y Fori=1To 5

TextWindow.Write(“User” + i +“, enter name: ”)
nameli] = TextWindow.Read()

- sentential form . EndFor
A A TextWindow.Write(“Hello”)
| a ! B | Y | | B:t Fori=1 { }
%—/
A——>BY A->BY: Stmt->ForID =Expr { To Expr OptStep CRStmtCRs EndFor }

Figure 1: The idea of structural candidates for code completion using LR parsing [2]

For example, on a request for a code completion on (the part of) a prefix ‘For i =1’, 5 is ‘For ID =
Expr’, which is a sequence of terminal and noterminal symbols describing the beginning of the for loop.

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024, Tokyo, Japan
*Corresponding author.

"These authors contributed equally.

& monir024@jnu.ac.kr (M. M. A. B. Atique); kwanghoon.choi@jnu.ac.kr (K. Choi); sasano@sic.shibaura-it.ac.jp (I. Sasano);
hamoon@sogang.ac.kr (H. Moon)

&} https://monircse061.github.io/page/ (M. M. A. B. Atique); https:https://kwanghoon.github.io/ (K. Choi)

® 0009-0000-7103-9744 (M. M. A.B. Atique); 0000-0003-3519-3650 (K. Choi); 0000-0002-9373-6206 (L. Sasano);

0000-0001-7359-3298 (H. Moon)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
B

mailto:monir024@jnu.ac.kr
mailto:kwanghoon.choi@jnu.ac.kr
mailto:sasano@sic.shibaura-it.ac.jp
mailto:hamoon@sogang.ac.kr
https://monircse061.github.io/page/
https:https://kwanghoon.github.io/
https://orcid.org/0009-0000-7103-9744
https://orcid.org/0000-0003-3519-3650
https://orcid.org/0000-0002-9373-6206
https://orcid.org/0000-0001-7359-3298
https://creativecommons.org/licenses/by/4.0/deed.en

Sasano & Choi’s method [2] [3] can automatically uncover a candidate ~y, which is “To Expr OptStep
CRStmtCRs EndFor’ to complete the rest of the for loop by a production ‘Stmt — For ID = Expr To Expr
OptStep CRStmtCRs EndFor’. Consequently, IDEs will respond with this candidate 7 to the request
for a code completion on ‘For i = 1’. Their continuing research [4] proposed a ranking method useful
to choose more likely candidate than the others when there are more than one candidate possible
for a prefix. It pre-investigates the frequencies of the occurrences of the candidates in the existing
open-source projects.

These methods [2][3] [4] are advantageous. The suggested candidates are guaranteed to be correct
syntactically, ranking can be customized for an individual software project, and this method can be
implemented in a programming language agnostic way.

However, the suggested candidates by the methods are limited to the form of terminal and noterminal
symbols. After choosing a candidate, programmers should manually edit it into a code text, which
diminishes productivity. Determining such a code text for a candidate is beyond the LR parsing-based
syntax analysis.

In this work, we study how Large Language Model [5] can complement these methods. Given a prefix
text for a3, the LR parsing based method firstly suggests a candidate v, and the LLM produces a code
completion satisfying the structure of the suggested candidate for the given prefix text. For example,
our system can automatically compose a prompt to the LLM as

This is the incomplete Small Basic programming language code:

TextWindow.Write("Hello ")
For i = 1 {To Expr OptStep CRStmtCRs EndFor}

1: For i = 1 To 5

2: TextWindow.Write("User" + i + ", enter name: ")
3: name[i] = TextWindow.Read()

4: EndFor

5:

6:

Complete the {To Expr OptStep CRStmtCRs EndFor} part of the code.
Just show your answer in place of {To Expr OptStep CRStmtCRs EndFor}.

where the suggested structural candidate is placed inside the braces. Then the LLM successfuly returned
exactly what we expected as this.

6: To 5
7: TextWindow.Write(name[i] + ", ")
8: EndFor

Thus the two approaches can complement each other. The LR parsing based analytic approach can
precisely specify the syntactic code structure to complete, while the LLM-based statistical approach can
predict the code text under the specified structure. According to [4], the top 1.8 suggested candidates in
the SmallBasic programs and the top 3.15 suggested candidates in the C11 programs on average were
found to be what are expected for testing. This evaluation results imply that candidates in the form of
the rest structural candidates should not be considered by the LLM. Composing prompts using the top
suggested structual candidates will be effective to instruct the LLM to exclude the bottom ones for code
completion.

To the best of our knowledge, this is the first attempt to guide an LLM using prompts that utilize
candidate structural information obtained from LR-parsing. We report ongoing work in this direction.

Our contributions are as follows.

Firstly, we propose a code completion prediction method that combines LR-parsing-based ranking of
candidate skeletons with Large Language Model (LLM)-based fleshing out of those skeletons.

Secondly, we have setup an environment to evaluate the proposed method and report initial results
using SmallBasic and C11 benchmarks.

Section 2 introduces our system and presents initial evaluation results . Section 3 compares our work
with existing research. Section 4 concludes the paper with future work.

2. An Overview of Our System and Its Evaluation

Figure 2 shows an overview of our system. The system operates in two phases. The collection phase
constructs a database from sample programs, mapping parse states to sets of ranked candidates. The
query phase retrieves a sorted list of candidates based on their ranks for a parse state corresponding
to a given cursor position being edited. The top suggested structural candidates are chosen from the
sorted list to compose a prompt, and then the LLM fleshes out the structural candidates to produce
textual candidates, which will be displayed to the programmer for code completion.

Candidate

Samnle collection &
ranking
(LR parsing)

parse Conversion | cursor
states (LR parsing) | position

Mapping of parse
states into ranked
candidates

Sample
Programs

structural
candidates

Fleshing out by textual
@ ChatGPT [candidates T)

Figure 2: Overview of our system

In this work, we focus on one aspect of this system: automatically composing prompts to the LLM
using structural candidates offered by the LR-based method is feasible and is an advancement to the
previous work [4] in that this system can now suggest textual candidates rather than structural candiates.

Under this goal, we design an experiment to evaluate the effectiveness of using ChatGPT for code
completion suggestions and to offer structural candidates (composed of terminals and nonterminals) to
guide these suggestions. Our proposed system can be assessed by addressing the following two research
questions (RQ):

« RQ1: Does the proposed system offer textual (actual) candidate suggestions with the aid of LLM
such as ChatGPT that are beneficial in introductory programming?
« RQ2: Is it reasonable to implement the system as a language-parametric tool?

In order to address the above research questions, our methodology includes the following steps. Selec-
tion of Programming Languages: We selected two programming languages, Microsoft SmallBasic
(MSB) and C11, for our experiments as in the previous work [4]. These languages are popular choices
for introductory programming. Data Collection: The testing set for SmallBasic was obtained from
its community. It consists of 27 programs totaling 155 lines taken from the well-known MSB tutorial.
Talking about C, the test set of C11 comprises 106 programs (11,218 lines in total) that are solutions from
the well-known book on the C programming language by Kernighan and Ritchie. Prefix Extraction:
Prefixes were collected from the source code files, along with cursor position information. This informa-
tion was obtained from candidates’ database by the lexical analysis in the LR parsing-based method [4].
Prompt Engineering: Using the collected prefix and structural candidate data, we crafted prompts for
ChatGPT. In this experiment, we selected the ‘gpt-3.5-turbo-0125" model for its better performance with
code completion. These information were then fed into the ChatGPT prompt to ask for substitutes for
our structural candidates into actual candidates. We compared the answers provided by ChatGPT with
the correct answers from our database. Evaluation: The responses from ChatGPT were evaluated using
well-known techniques such as SacreBLEU, which is a popular method for assessing large language
models and SequenceMatcher similarity. The SacreBLEU score measures the n-gram (sequences of n
items, typically words or characters) similarity between the reference code sequence and the generated
code sequence. It counts how many n-grams in the generated code sequence match (token-by-token)
n-grams in the the reference code sequence. The SequenceMatcher is a class available in python module
named “difflib”. It compares the similarity between two sequences of strings (in terms of characters)
by identifying the best alignment between them. Given two sequences, find the length of the longest
subsequence present in both of them. Here, we used the parameter isjunk=None so that no elements
are ignored. The data set as well as the developed software are all available in the public repository .

'https://github.com/monircse061/ChatGPT-Code-Completion-Work

https://github.com/monircse061/ChatGPT-Code-Completion-Work

We present a summary of the experimental results for both MSB and C11 which is dipicted in Table 1.
For MSB, we experimented with 27 programs where, for each program, we iterated our system for each
structural candidate, calculated the evaluating metrics values, and then averaged the precision for the
whole program. This process was done for every program. Finally, we calculated the mean precision
for the 27 programs in terms of SacreBLEU and sequence matcher similarity. On average, our system
predicts the textual code suggestion with over 45% accuracy for each testing program when using
SacreBLEU as an evaluation metric. Precision is almost similar at nearly 45% when sequence matcher
similarity is taken into account. The similar process was used with C11. For 106 C11 programs, the
average SacreBLEU score is 21.463%, indicating that our system forecasts the correct code completion
suggestions. Sequence matcher similarity is nearly the same for C11.

Table 1
Experimental results (precision) on specific languages
PLs Microsoft SmallBasic (%) C11 (%)
SacreBLEU Precision 45.247 21.463
Sequence Matcher Precision 44.354 20.384

To show the effectiveness of guidance by a structural candidate, we discuss a case representing the
best prediction of our system as this. In the MSB experiment case depicted in Figure 3, line 2600 marks
the parse state and cursor position, followed by the next few lines (2602 to 2612), which provide the
prompt for the ChatGPT. Lines spanning from 2603 to 2608 represent the prefix code. Subsequently, a
candidate structure appears in line 2609: “To Expression OptStep CRStmtCRs EndFor’. It interprets that
the actual candidate should be “To 5 \n TextWindow . Write (name [i] + ", ") \n EndFor’, which is
shown in line 2618. Line 2614 outlines the time taken from the query to the ChatGPT response, which
is 0.6903 seconds. In this candidate structure, the response generated by ChatGPT is highly accurate.
The precision at the unigram level (1-gram) is 100% which is seen at line 2621, and other metric also
show satisfactory result (line 2622). This example demonstrates that our candidate suggestion plays a
crucial role in guiding ChatGPT’s responses. Each terminal and non-terminal component contributes
to achieving an accurate result from ChatGPT.

2600: Parse State: 85Cursor Position: 6 11

2601:

2602: This is the incomplete Small Basic programming language code:

2603: For i = 1 To 5

2604 : TextWindow.Write("User" + i + ", enter name: ")

2605: name[i] = 1

2606: EndFor

2607: TextWindow.Write("Hello ")

2608: For i =1

2609: ‘To Expression OptStep CRStmtCRs EndFor’

2610: Complete the ‘To Expression OptStep CRStmtCRs EndFor’ part of the code
2611: 1in the Small Basic programming language. Just show your answer in place
2612: of ‘To Expression OptStep CRStmtCRs EndFor’.

2613:

2614: Time taken: 0.6902937889099121 seconds

2615: Received response: To 5

2616: TextWindow.Write(name[i] + ", ")
2617: EndFor
2618: Actual result: To 5 \n TextWindow . Write (name [i] + ", ") \n EndFor

2619: SACREBLEU Score: {‘precisions’: [100.0, 86.66666666666667, 78.57142857142857,
2620: 76.92307692307692], ‘sys_len’: 16, ‘ref_len’: 20}

2621: First element of precision:100.0

2622: Sequence Matcher Similarity Precision:0.8462619469026548

Figure 3: High Prediction Result (MSB)

Based on the evidence provided, we can answer Research Question 1 in the affirmative.
Using ChatGPT with LR parsing-based structural candidates is effective in providing code completion

suggestions for introductory programming languages, particularly for MSB. Our system shows correct
suggestions with minimal prefixes (hints), which is notable. This indicates that the system can be
beneficial in educational contexts where MSB is used. However, improvements are needed to increase
precision, especially for more complex languages like C11. The precision for C programs in C11 is
low due to short candidate structures like ’[’, ’; and complex, hard-to-infer structures. Additionally,
predicting the next token or line of code with minimal prefix is challenging, especially in long files.

On answering the second research question, based on the successful application of our system to the
two programming languages, we can claim that our code completion system is language-agnostic. This
system can be incorporated into any programming language.

3. Related Work

There are various studies conducted up to now which use large code base and/or machine learning
to code completion. One is by Svyatkovskiy et al. from Microsoft, who introduced a system named
IntelliCode Compose [6]. This system leverages GPT-C, a variant of OpenAI’s GPT-2 [5], trained on a vast
dataset of program source code. It is designed to generate sequences of tokens that form syntactically
correct language constructs, such as statements containing local variables, method names, and keywords,
for languages including C#. Another study by [7] explored identifier completion with ranking candidates.
They sought solutions to improve the efficiency of the completion process. Rather than relying on prefix
matching, used in many completion systems, they introduced subsequence matching, where user-input
sequences of characters are compared to names containing them, even if they are non-consecutive.
Recently a study by [8] delved into method invocation and field access completion. Nguyen et al.
[9] combined program analysis and langauge model for completing a partially-input statement or
suggesting a statement that immediately follows the current statement if it is a complete one. Gabel
et al. [10] first observed the regularity of software code mentioned above. There are infinitely many
syntactically valid statements, but there are much smaller, or may even be finite, number of pracitally
useful statements. Liu et al. [11] presented a non-autoregressive model for concurrently computating
candidates, each of which is a line of code starting at the cursor position. 10 lines of code immediately
before the current empty line is given to the completion system when programmers write code, and
also 10 lines of code immediately before every line is given as training data together with the current
line. They also use some information of tokens such as keywords, identifiers, operators, etc.

4. Conclusion and Future Work

In this research, we introduced a method for automatically composing prompts to the LLM using
structural candidates offered by the LR-based method and assessed the method using two programming
languages. Compared to the the previous work [4], this system can now suggest textual candidates rather
than structural candiates. By using structural candidates in the prompts, the system can effectively
instruct the LLM to exclude the bottom structural candidates for code completion.

There are many topics for future work. A few important topics are to build an IDE for usability
evaluation, to measure the effectiveness of structural candidates in the prompts to the LLM, and to
compare the prediction performance of our system with that of the others particularly based on the
Large Language Models.

Acknowledgments

This work was supported by Innovative Human Resource Development for Local Intellectualization
program through the Institute of Information & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (II'TP-2023-RS-2023-00256629). This work was
partially supported by the Korea Internet & Security Agency (KISA) - Information Security College

Support Project. Also, this work was partially supported by JSPS KAKENHI under Grant Number
23K11053.

References

[1]
(2]

[9]

[10]

[11]

A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers — principles, techniques, and tools, 2nd
edition, Addison Wesley, 2006.

I. Sasano, K. Choi, A text-based syntax completion method using Ir parsing, in: Proceedings
of the 2021 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM
2021, Association for Computing Machinery, New York, NY, USA, 2021, p. 32-43. URL: https:
//doi.org/10.1145/3441296.3441395. doi:10.1145/3441296 . 3441395,

I. Sasano, K. Choi, A text-based syntax completion method using Ir parsing and its evaluation,
Science of Computer Programming (2023) 102957. URL: https://www.sciencedirect.com/science/
article/pii/S0167642323000394. doichttps://doi.org/10.1016/j.scico.2023.102957.

K. Choi, S. Hwang, H. Moon, L. Sasano, Ranked syntax completion with Ir parsing, in: Proceedings
of the 39th ACM/SIGAPP Symposium on Applied Computing, SAC 24, Association for Computing
Machinery, New York, NY, USA, 2024, p. 1242-1251. URL: https://doi.org/10.1145/3605098.3635944.
doi:10.1145/3605098.3635944.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I Sutskever, Language
models are unsupervised multitask learners, https://paperswithcode.com/paper/
language-models-are-unsupervised-multitask, 2018.

A. Svyatkovskiy, S. K. Deng, S. Fu, N. Sundaresan, Intellicode compose: Code generation us-
ing transformer, in: Proceedings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2020, Association for Computing Machinery, New York, NY, USA, 2020, p. 1433-1443. URL:
https://doi.org/10.1145/3368089.3417058. doi:10.1145/3368089.3417058.

S. Hu, C. Xiao, Y. Ishikawa, Scope-aware code completion with discriminative modeling, Journal
of Information Processing 27 (2019) 469-478. d0i:10.2197/ipsjjip.27.469.

L. Jiang, H. Liu, H. Jiang, L. Zhang, H. Mei, Heuristic and neural network based prediction
of project-specific api member access, IEEE Transactions on Software Engineering 48 (2022)
1249-1267. d0i:10.1109/TSE. 2020.3017794.

S. Nguyen, T. N. Nguyen, Y. Li, S. Wang, Combining program analysis and statistical language
model for code statement completion, in: Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’19, IEEE Press, 2020, p. 710-721. URL:
https://doi.org/10.1109/ASE.2019.00072. doi:10.1109/ASE. 2019.00072.

M. Gabel, Z. Su, A study of the uniqueness of source code, in: Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE "10, Association
for Computing Machinery, New York, NY, USA, 2010, p. 147-156. URL: https://doi.org/10.1145/
1882291.1882315. doi:10.1145/1882291.1882315.

F. Liu, Z. Fu, G. Li, Z. Jin, H. Liu, Y. Hao, L. Zhang, Non-autoregressive line-level code completion,
ACM Trans. Softw. Eng. Methodol. (2024). URL: https://doi.org/10.1145/3649594. do0i:10.1145/
3649594, just Accepted.

https://doi.org/10.1145/3441296.3441395
https://doi.org/10.1145/3441296.3441395
http://dx.doi.org/10.1145/3441296.3441395
https://www.sciencedirect.com/science/article/pii/S0167642323000394
https://www.sciencedirect.com/science/article/pii/S0167642323000394
http://dx.doi.org/https://doi.org/10.1016/j.scico.2023.102957
https://doi.org/10.1145/3605098.3635944
http://dx.doi.org/10.1145/3605098.3635944
https://paperswithcode.com/paper/language-models-are-unsupervised-multitask
https://paperswithcode.com/paper/language-models-are-unsupervised-multitask
https://doi.org/10.1145/3368089.3417058
http://dx.doi.org/10.1145/3368089.3417058
http://dx.doi.org/10.2197/ipsjjip.27.469
http://dx.doi.org/10.1109/TSE.2020.3017794
https://doi.org/10.1109/ASE.2019.00072
http://dx.doi.org/10.1109/ASE.2019.00072
https://doi.org/10.1145/1882291.1882315
https://doi.org/10.1145/1882291.1882315
http://dx.doi.org/10.1145/1882291.1882315
https://doi.org/10.1145/3649594
http://dx.doi.org/10.1145/3649594
http://dx.doi.org/10.1145/3649594

Faster bivariate lexicographic Grobner bases modulo z*
Xavier DAHAN

I Tohoku university, IEHE, Sendai, Japan

Abstract
Given t bivariate polynomials fi,..., fi € K[z, y], and an integer k we report a work-in-progress to
compute a minimal, not reduced, lexicographic Grébner basis of the ideal (fi,..., fi,z") in O~ (td?k),

where d is an upper bound on the y-degree of the f;’s. Using the fast normal form algorithm of Schost
& St-Pierre [1], this implies that we can compute its reduced Grobner basis in O™~ (td*k + s*dk) where
s is the number of polynomials contained in the output Grobner basis. In many instances this improves
the algorithm of Schost & St-Pierre [2] based on the Howell matrix normal form that runs in time

O~ (td“k).

Keywords
Groébner bases, Lexicographic order, Bivariate, Euclidean division

1. Introduction

Background Lexicographic Grobner bases (lexGb for short) play a fundamental role when
manipulating polynomial systems due to the elimination property that they are endowed with.
But the lexicographic order often does not behave well with standard Grobner bases algorithms [3],
whereas the degree reverse lexicographic order has been often observed to behave the best among
monomial orders when computing a Grobner basis. This is grounded in strong theoretical
evidences [4, 5]. As a result, a standard strategy to compute a zero-dimensional lexGb consists
first in computing a Grébner basis for the degree reverse lexicographic order with efficient modern
algorithms like F4, F5 [6, 7] and then proceed to a change of order algorithm [8| to compute the
reduced lexGb.

In the case of two variables only, the situation is different. For ¢ polynomials f1,..., fi € K[z, y],
of maximal degree d in y, and total degree diy, Schost and St-Pierre in [2], obtains a running
time in O~ (t“d“d;ot) when at least one f; has for leading monomial y®. As usual w is the
exponent of matrix multiplication. This algorithm computes the Hermite normal form of a
generalized Sylvester matrix of the input polynomials, extending the case t = 2 treated by
Lazard |9, Section 5].

The same article [2] also considers computing the reduced lexGb modulo 2%, that is of the
ideal (f1,..., fi,2*). The idea is to work in the ring R = K[z]/z* and to compute the Howell
normal form of a generalized Sylvester matrix of the f; € R[y]. This Howell normal form is the
adaptation of the Hermite normal form for matrices of polynomials with coefficients in R. The
cost can be made of O™ (td”k).

Result We consider here the more general moduli P¥, for P an irreducible polynomial in K|[x]
of degree dp. In this paragraph we let dp = 1 to simplify comparisons. Our algorithm based on
Euclidean division works in O~ (td?k) and computes a minimal but not reduced Grébner basis.

Schost €9 St-Pierre’s normal form algorithm. The cost of reducing this minimal lexGb is due to
another article of Schost & St-Pierre [1, Section 4] and is better stated in term of the output lexGb
H = (hs,...,ho). Assume that LM(hs) < -+ < LM(hg), where < stands for the lexicographic

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024,
Tokyo, Japan

EMAIL: xdahan@gmail.com (X. DAHAN)

ORCID: 0000-0001-6042-6132 (X. DAHAN)

(© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International
T (CC BY 4.0).

mailto:xdahan@gmail.com
https://orcid.org/0000-0001-6042-6132
https://creativecommons.org/licenses/by/4.0/deed.en

order with z < 3. Under our setting we have hy = P*, and if we let deg,(P) = 1 like when
P = z, then deg,(hs) = k. Let deg,(ho) = no be the largest y-degree of the polynomials in
H, and let s + 1 = |H| be the number of polynomials in the output. Then reducing H costs
O~ (s?nok) (see [1, Prop. 4.4 & Prop. 5.1]).

Note that s < min{k,d} and ng < d. So we obtain an algorithm that computes the reduced
lexGb in O~ (td?k + s’nok), always within O~ (td?k + s?dk). This is comparable or better than
O~ (td“k) as soon as s?ng = O(td¥). In the case t = O(1) and s ~ d = k, we obtain O~(d?)
which is worth than O~(d“*!). But in many cases, the asymptotic complexity is better.

Implementation The articles [2, 1] do not mention any implementation. Indeed, implementations
of the Howell normal form are apparently seldom and not available publicly — at least in major
computer algebra systems. We only found Chapter 4 of the PhD thesis of Storjohann which gives
the complexity of O~ (d“k), see [10, Theorem 4.6], and from which originates the result of [2].

On the other hand, since the presented algorithm that computes a minimal non-reduced lexGb
in O~ (td*k) can be compared to the quadratic-time standard Euclidean algorithm, it is efficient
up to fast univariate arithmetic (polynomial operations involving the z-variable only). Our
implementation in Magma (available at http://xdahan.sakura.ne.jp/lexgh24.html) supports this
claim. As for the normal form algorithm modulo a reduced Grobner basis of Schost & St-Pierre [1,
Section 4], making an implementation efficient is an interesting challenge. For now we resorted
here to the internal Magma command “Reduce” (in orange).

Some timings We tested the algorithm for two input polynomials modulo z*:

k k
ap = (H(y—i—i—i—a:—l—---—kxi)), b = (y+ 14 2x) (H(y+i+x+--~—|—:ni_1+2mi)>

i=1 =2

The reduced lexGb of (ag, by, z¥) has s + 1 = k + 1 polynomials (the maximum possible) and is
dense (it has O(k3) coefficients). Therefore, this family of examples is suitable for benchmarking
as it involves worst case situations: the number of recursive calls is maximal, the cost of the
normal form is maximal. Note also that taking only ¢ = 2 polynomials as input is not restrictive
since recursive calls involve more polynomials in the input. We report below on timings for
k = 30,40,...,120 (left) and k = 70, 140, ..., 250 (right) over a prime finite field of 64bits. With
t = O(1), k = d, the theoretical cost to obtain a minimal lexGb is O~ (k?®). The internal command
Reduce of Magma becomes quickly the bottleneck (in orange. Time > 500s for k& > 200, timings
are not displayed). Without surprise, its timing grows faster than the cost of the fast version
of Schost & St-Pierre, which is here O~ (k%) (it seems to be closer to something in O~ (k)).
Although we could not compare with the Howell form approach of [2], we could compare with

700 A

sec —— lexGb (this) —— lexGb (this)

35 A —— Reduce sec —— Reduce
----- lexGb+Reduce 600 ===+ lexGb+Reduce
30 4

—— Groebner engine —— Groebner engine

500 A
25 A

400
20 A

300 A

/ 200 4

100 1

15

10 A

e 0

T T T T T T T T T T T T T T T T T T T
30 40 50 60 70 80 90 100 110k 70 920 110 130 150 170 190 210 230 250

http://xdahan.sakura.ne.jp/lexgb24.html

the internal Grébner engine of Magma by calling GroebnerBasis([a, b, 2¥]) (red, until & = 100).
As already reported in [11], the timings are incomparably slow.

Scope The motivation behind working modulo P is twofold. Firstly, this serves as a skeleton for
a similar algorithm that tackles the more general input (fi,..., f;,T) for an arbitrary polynomial
T € K|z], not necessarily the power of an irreducible one. See [11|, which utilizes dynamic
evaluation, for a detailed account when ¢t = 2. Secondly, we would like to target the reduced lexGb
‘H of the general input (fi,..., f;), not modulo a univariate polynomial, with our Euclidean-
division based algorithm. After the work [11], a natural question asks how can we compute the
lexGb of two polynomials f1, fo from their subresultant sequence? To this end, it is enlightening
to access the lexGbs modulo Pik", where Pik" runs over the primary factors of the elimination
polynomial of the (f;);’s. The work [12]| then permits to understand how these lexGbs can
reconstruct H via Chinese remainders. These remarks lead to a reasonable hope to compute a
minimal lexGb faster than the O™ (t*d“d;s) of [2].

Treating only two variables is clearly limited. Yet, all aspects shall be mastered as there
is a cliff in difficulty when considering more than two variables: no general form of Lazard’s
structural theorem [9] which is key in this work and in [2, 1|. Let us mention though the radical
case where some sort of generalizations of Lazard’s theorem have been shown [13, 14, 15]. The
FEuclidean algorithm based approach certainly helps to understand where this difficulty stems
from. One aspect of it can be related to the absence of a MONICFORM routine (see Eq. (1))
that would transform a nilpotent polynomial, say in K[z, y, z] modulo a primary ideal in K[z, y].
Think of f = x2%2 4+ yz + 2 + y, nilpotent modulo the primary (22,y?) C K[z, y]. It appears
that the reduced lexGb of the ideal (f, y?, z?)is [f, y?, zy, 2?]. Observe the new polynomial
zy introduced with the smaller variables x and y. This phenomenon does not appear for two
variables only. Therefore, the Euclidean division approach helps to understand better the case of
three variables or more.

Related works Recently, articles dealing with bivariate Grobner bases have flourished. A
number of them address the question of quasi-optimal asymptotic complexity estimates, with
adequate genericity assumptions, and the relation with the resultant [16, 17, 18, 19, 20|. Focusing
on non-generic lexGbs, the work [11] from which the present work is inspired, generalizes dynamic
evaluation to a non-squarefree modulus. We have already cited |2, 1|. Besides the fast normal
form in Section 4, the article [1] introduces a fast Newton iteration for general bivariate lexGbs.

2. The algorithm

Overview It is based on ideas introduced in [11], which is constrained to two input polynomials
a and b. Let us summarize the content of the first part of [11] which focuses on working modulo
P* (the second part focuses on working modulo an arbitrary monic univariate polynomial). The
divisions occurring in the Euclidean algorithm of a and b modulo P* require invertible leading
coefficients. In the ring R = K[z]/(P") elements are either invertible or nilpotent. Weierstrass
preparation theorem realized by Hensel lifting permits to circumvent this difficulty, by calculating
a “monic form™ Given f € K[z, y] reduced modulo P*, we denote f, Cy MoNIcForMm(f, P¥)
where:

O = ged(content(f), P*) € K[, f is monic in y, (f, P*y=1(Cs f, P*). (1)

The Euclidean algorithm can be pursued with the monic f, and Cy f will be part of the lexGb.

We adapt this strategy to design the main algorithm H < ADD(f, G) where G is a minimal
lexGb such that G NK[z] = (P¥) with ¥ < k, f € K[z, y] and H is a minimal lexGb of (f) + (G).
Assuming for the moment this algorithm correct and running in time O™~ (d?k’), the general
algorithm 1 “LEXGB” has the following worst-case complexity:

Algorithm 1: G « LEXGB(f1,..., fi; P¥)

Input: Bivariate polynomials fi, ..., f;. Power of an irreducible polynomial P* € K[xz].
Output: reduced lexGb of (fy,..., fi, PF)
1 fi,...,ft — fi mod P* ... f, mod P* // O~ (tdd,) or free
2 G« [Pk']
s for i=1,...,t do
s+ | G Abn(f;, 9) /] O™ (@kdp)
5 return REDUCE(G) // REDUCE based on the normal form of |1, Section 4]. O~ (s%*ngk)

Theorem 1. Let d be the mazimal degree in y of the polynomials f1,..., fi. Let d, their mazximal
degree in x. Let dp = deg,(P). Algorithm 1 computes a minimal lexGb of {f1,..., fi, P*) in
O~ (td*kdp + tdd,).
If the input polynomials are reduced modulo P*, or if P = x then the cost is O™ (td*kdp).
The reduced lexGb requires additionally O™~ (s*nok) operations in K, where s = |G|, ng =
degy(go) 1s the largest y-degree of the polynomials in the output.

Algorithm 2: AbD(g, G)

Input: g € K[z,y], G = [go, ..., gs] minimal lexGb modulo P* = g,
Output: minimal lexGb of (g) + (G)

6 if G == [constant] then

7 L return [1]

s f, C; < MonICFORM(g, P*) // (Cy f, P¥)y ={g, P*), f monic, Cy € K[z]
9 if f == 1 then

10 L return ADDUNIVARIATE(C, G) //Special “easy” case where input polynomial € K[z]

11 if |g| ==1 then
12 L return [C} f, P¥]

13 return ADDGENERIC(f, Cf, G) // Output generates (C f) + (G)

The main algorithm 2 “Add” The purpose is given a minimal lexGb G as above, not necessarily
zero-dimensional, and a polynomial f € K]z, y] to construct a minimal lexGb of the ideal (f)+(G).
Thus, it is interesting for its own. It builds upon Euclidean divisions, the key point consists
in obtaining a degree (in y) decrease through a Euclidean division (see Lines 24 and 34), and
then to proceed to adequate recursive calls, with smaller input data (Lines 21 and 23). The
algorithm 2 “ADD” actually only treats base cases, and then calls Algorithm 3 “ADDGENERIC”,
whose input are amenable to recursive calls. One base case is when f € K[z] (Line 10) treated
apart in the “easy” ADDUNIVARIATE. We omit this short algorithm in this work-in-progress
report. Otherwise Algorithm 3 ADDGENERIC, called at Line 13, treats “generic” input: f monic,
reduced modulo P*, and d 7 = deg,(f) > 1. Its role essentially boils down to managing four
cases. Write G = [go, ..., gs] (LM(gs) < --- < LM(go), so that g, = P* and deg,(go) = no).

1. Case distinction: £ >k or £ < k (equivalently Cy t gs = P* or Cy | gs)
2. Subcases distinction: dy < ng or dy > ng

The first case distinction is treated by renaming variables (if-test at Line 16). The subcase
distinction (if-test at Line 20) leads to call two subroutines ADDTWOA and ADDTwWOB which
looks very similar, but with key differences.

Algorithms AddTwoA and AddTwoB The input are monic bivariate polynomials a, b, monic
univariate polynomials C,, Cj, which are powers of P, and a minimal lexGb G modulo P*.

10

Algorithm 3: ADDGENERIC(f, Cy, G)

Input: f € K[z,y] monic deg, (f) > 1, Cy = P' € K[z], G minimal lexGb modulo Pk
Output: minimal lexGb of (C[f) + (G)

14 Let G = [go,..., gs—1, P¥], and write go = Mo go

15 Ca — ng(Mo, Cf) // Ca = Cf or Ca = M()
16 if C, == C; then

17 ‘ (l(—f,b(—go’y7 Cb<—M0 //Cbb:g()
18 else

19 Lb(—f,a%goyy, Cy + Cy // Caa = go
20 if deg, (a) > deg,(b) then // Always holds (Cya, Cyb, P¥)y=(C;f, go, P¥)
21 ‘ return ADDTWOA(a, b, Cy, Ch, G>1) // 1exGb of (Cya, Cyb) + (g1,...,9s)
22 else

23 | return ADDTWOB(a, b, Ca, Cy, G>1) // lexGb of (Cya, Cpb) + (g1,...,9s)

Additional degree constraints on a, b, C,, Cy depend on one or the other algorithm. The output
is a minimal lexGb of (Cy a, Cpb) + (G) (whence the name “ADDTWO”). The key point is the
degree decrease obtained by the Euclidean division at Lines 24 and 34. Then they undertake
recursive calls. These divisions henceforth imply the complexity stated in Theorem 1.

Algorithm 4: ADDTWOA(a, b, Cy, Cy, G)
Input: 1. a,b € K]z, y] monic, deg,(a) > deg, (b)
2. C,,Cy € K[z] powers of P, C, | Cy | P¥,
3. G minimal lexGb modulo P*, and deg, (a) > deg, (G)
Output: minimal lexGb of (Cy a, Cyb) + (G)

24 T4+ a modb // b monic. Over R = K[x}/(%ﬁ) It holds (Cya, Cyb, P*) = (Cyb, Cypr, PF)

25 if 7 =0 mod Z- then // Here (Cya, Cpb, P*)=(Cyb, PF)
26 ‘ G" + ADD(b, Cibg) // Here (C, G") = (Cy b) 4+ (G)
27 else

28 G’ «+ ApD(r, Cibg) /] {CG") = (Cyr) + (G)
29 G" + App(b, G') /] {CyG") = (Cpb) + (CpG") = (Cpb, Cpr) +(G) = (Cp b, Cra)+ (G)
so if C, == C} then

s1 | return Cy-G” // Here (CpG") = (Cyp b, Cya) + (G)
32 else

33 L return [C, a] cat Cp, - G” // output generates (C, a) + (CtG") = (Cya, Cyb) + (G)

Algorithm 5: ADDTwOB(a, b, C,, Cp, G)
Input: 1. a,b € Kz, y] monic, deg,(a) < deg, (b),
2. C,, Cy € K[z] powers of P, C, | Cy | PF,
3. G minimal lexGb modulo P¥, deg, (b) > deg,(G)
Output: minimal lexGb of (Cy a, Cyb) + (G)

34 T 4 g—Zb mod a // a monic. Over R = K[m]/(é—j) It holds (C, r, Cya, P*) = (Cyb, Cya, P*).

s5 if r =0 mod Z- then // Here (C,a, P¥)=(C,a,Cyb, P
36 ‘ return C, - ADD(a, C%) // Output generates (C, a) + (G)
a7 else

38 L G’ < ApD(r, C%lg) /] (CoG") = (Cqr) + (G) return C, - ADD(a, G') // Output generates
(Coa)+(CoG") = (Cqa, Cyb)+ (G)

11

References

[1] E. Schost, C. St-Pierre, Newton iteration for lexicographic Grobner bases in two variables,
Journal of Algebra 653 (2024) 325-377.

[2] E. Schost, C. St-Pierre, p-adic algorithms for bivariate Grobner bases, in: Proceedings of
the 2023 International Symposium on Symbolic and Algebraic Computation, ACM, New
York, NY, USA, 2023.

[3] K. Kalorkoti, Counting and Grébner bases, J. Symbolic Computation 31 (2001) 307-313.

[4] D. Bayer, M. Stillman, A criterion for detecting m-regularity, Inventiones mathematicae 87
(1987) 1-11.

[5] H. Loh, The converse of a theorem by Bayer and Stillman, Advances in Applied Mathematics
80 (2016) 62—69.

[6] J.-C. Faugeére, A new efficient algorithm for computing Grobner bases (F4), Journal of pure
and applied algebra 139 (1999) 61-88.

[7] J.-C. Faugere, A new efficient algorithm for computing Grobner bases without reduction to
zero (F5), in: Proceedings of the 2002 international symposium on Symbolic and algebraic
computation, 2002, pp. 75-83.

[8] J.-C. Faugere, P. Gianni, D. Lazard, T. Mora, Efficient computation of zero-dimensional
Grobner bases by change of ordering, Journal of Symbolic Computation 16 (1993) 329-344.

[9] D. Lazard, Ideal bases and primary decomposition: case of two variables, Journal Symbolic
Computation 1 (1985) 261-270.

[10] A. Storjohann, Algorithms for matrix canonical forms, Ph.D. thesis, ETH Ziirich, 2000.

[11] X. Dahan, Lexicographic Grobner bases of bivariate polynomials modulo a univariate one,
Journal of Symbolic Computation 110 (2022) 24-65.

[12] X. Dahan, Chinese remainder theorem for bivariate lexicographic Grobner bases, in: Proceed-
ings of the 2023 ACM International Symposium on Symbolic and Algebraic Computation,
ISSAC ’23, ACM press, New York, NY, USA, 2023.

[13] M. Lederer, The vanishing ideal of a finite set of closed points in affine space, J. of Pure
and Applied Algebra 212 (2008) 1116-1133.

[14] M. Marinari, T. Mora, A remark on a remark by Macaulay or enhancing Lazard structural
theorem, Bull. Iranian Math. Soc. 29 (2003) 1-45, 85.

[15] B. Felszeghy, B. Rath, L. Ronyai, The lex game and some applications, Journal of Symbolic
Computation 41 (2006) 663 — 681.

[16] G. Villard, On computing the resultant of generic bivariate polynomials, in: Proceedings of
the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ISSAC
18, ACM, 2018, p. 391-398.

[17] G. Villard, Elimination ideal and bivariate resultant over finite fields, in: Proceedings of
the 2023 ACM International Symposium on Symbolic and Algebraic Computation, ISSAC
23, ACM press, New York, NY, USA, 2023.

[18] J. van der Hoeven, R. Larrieu, Fast reduction of bivariate polynomials with respect to
sufficiently regular Grébner bases, in: Proceedings of the 2018 ACM International Symposium
on Symbolic and Algebraic Computation, ISSAC "18, ACM, New York, NY, USA, 2018, pp.
199-206.

[19] J. van der Hoeven, R. Larrieu, Fast Grobner basis and polynomial reduction for generic
bivariate ideal, Applicable Algebra in Engineering, Communication and Computing 30
(2019) 509-539.

[20] J. van der Hoeven, G. Lecerf, Fast computation of generic bivariate resultants, Journal of
Complexity 62 (2021) 101499.

12

Some Applications of Chinese Remainder Theorem
Codes with Error-Correction

Jesse Elliott!, Eric Schost?

TUniversity of Waterloo, David R. Cheriton School of Computer Science, Waterloo, Ontario, Canada

Abstract
Modular techniques with rational reconstruction improve complexity when computing over a ground
field such as Q by controlling the growth of intermediate expressions. Working modulo a single prime
p € N, one can solve the problem modulo p and lift the solution to Z/p*Z for sufficiently large p* using
p-adic lifting techniques, when applicable. Alternatively, computations can be done modulo several
small primes p, ..., p,- One can then obtain a solution modulo their product p; - p, using the Chinese
remainder theorem. We say primes p are “unlucky” when the procedure modulo p is not well-defined
or returns a result that is different from the modulo p reduction of the rational output. Otherwise
we say primes are “lucky.” For some applications (solving zero-dimensional polynomial systems, for
instance), testing if a prime is lucky may be prohibitively expensive. However, it is often possible to
bound the number of unlucky primes by proving the existence of a nonzero U € Z with all unlucky
primes dividing U, and bounding the height of U. Using p-adic lifting requires the initial prime to be
lucky, with a high probability of success that is determined by an upper bound on U. On the other
hand, the Chinese remainder theorem requires that all primes are lucky, and to guarantee this with high
probability usually requires larger primes. We report on work-in-progress that uses error correction
techniques with Chinese remaindering that allows us to tolerate a few unlucky primes. Our hope is to
then guarantee a high probability of success while using primes of moderate size.

We base our work on independent results from Béhm, Decker, Fieker and Pfister [1, 2] and Pernet [3].
To our knowledge, the consequences we derive, while relatively straightforward, are new. We give
explicit sufficient conditions on the number of primes and their size to guarantee an arbitrary probability
of success, assuming we can pick primes uniformly at random in a given interval. We also describe a
number of applications.

Keywords

Chinese remainder theorem codes, polynomial system solving, modular algorithms

1. Background and previous work

Solving algebraic problems over a ground field such as Q, considering only algebraic complexity
(the number of base field operations) is hardly a good predictor of practical runtime: a precise
analysis should take into account the size of the coefficients in the output, and the number of
boolean operations throughout the execution of the algorithm.

One major challenge in such algorithms is the growth of coefficients. In many situations,
we can give reasonably sharp a priori bounds on the bit size of the coefficients in the output

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024, Tokyo,

Japan

& jakellio@uwaterloo.ca (J. Elliott); eschost@uwaterloo.ca (E. Schost)

&} https://uwaterloo.ca/scholar/jakellio/home (J. Elliott); https://cs.uwaterloo.ca/~eschost/ (E. Schost)
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

13

mailto:jakellio@uwaterloo.ca
mailto:eschost@uwaterloo.ca
https://uwaterloo.ca/scholar/jakellio/home
https://cs.uwaterloo.ca/~eschost/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

(a typical recipe being understanding them as determinants built from the input problem).
Precisely, we will assume below that we know an upper bound H on the height of all rational
numbers appearing in the output, where in this note the height h(c) of a rational number c is
the maximum of the base-2 logarithms of the absolute values of its minimal numerator and
denominator. However, such insight should not be expected for intermediate results of our
algorithm. As the algorithm progresses, the size of these coefficients may increase, before
possibly collapsing when we reach the end result.

Modular techniques are used to avoid intermediate expression swell. They involve performing
computations modulo one or several small primes (ideally, machine primes), thereby avoiding
intermediate coefficient growth, the objective being to compute the requested output (typically,
a set of polynomials, or a matrix thereof) modulo a certain large integer M. If M is large enough
(precisely, if log,(M) > H + 1), rational reconstruction can then be applied coefficient-wise, in
order to recover an output with rational coefficients.

On one end of the spectrum, one can consider working modulo a single prime p, solve the
problem modulo p and lift the solution to Z/MZ, for M = pk large enough, by means of Newton
/ Hensel techniques, if applicable. The obvious alternative is to compute modulo sufficiently
many “small” primes (p;)1<i<, and use the Chinese remainder theorem to obtain a solution
modulo M = py - py.

For most problems of interest, there exist primes p for which the procedure modulo p is
not well-defined, or returns a result that differs from the modulo p reduction of the rational
output; we will call these primes unlucky, and lucky otherwise. In the problems we have in
mind, such as solving systems of polynomial equations, testing whether a prime is lucky may be
prohibitively expensive. However, it is often possible to bound the number of unlucky primes:
this is usually done by proving the existence of a nonzero U € Z such that all unlucky primes
divide U, and bounding the height of U.

Using p-adic lifting techniques, we need to ensure that the initial prime p is lucky; knowing
the upper bound on U, we can determine what interval to pick p from in order to guarantee a
high probability of success, say at least 1 — ¢ for a given tolerance ¢. For Chinese remaindering
algorithms, though, the direct approach requires all primes being lucky, and guaranteeing that
this is the case with probability 1 — ¢ usually requires us to use larger primes (we discuss this
further below). In this short note, we report on work-in-progress that uses error correction
techniques (very loosely speaking, analogues of Reed-Solomon decoding, but for rational number
reconstruction), where we tolerate that a few primes return wrong results (or no results at all).
Our hope is then to be able to guarantee high probability of success, while using primes of
moderate size.

We base our work on recent (independent) introductions of this idea, by Bohm, Decker,
Fieker and Pfister [1, 2] and Pernet [3], the former in the context of algorithms for algebraic
geometry, and the latter mentioning applications to linear algebra. The decoding algorithms and
the sufficient conditions for success given in these two families of references are distinct, but
similar; both follow an iterative reduction procedure, stated as a variant of Euclid’s algorithm
in Pernet’s work, and as a variant of Gaussian lattice reduction by B6hm et al. Our presentation
will follows Pernet’s.

The core of our discussion concerns the reconstruction of a single rational number. We
also point out that in the contexts we are interested in, algorithms usually return several such

14

numbers (typically as coefficients of polynomials), and we can often predict that all these
rationals admit a small common denominator. Taking this specificity into account would lead us
toward error-tolerant vector rational number reconstruction; ideally, we could hope to reduce
the number of primes by up to two, but as of now, this appears to be quite challenging.

2. Our contribution

Let us first review the key result regarding Chinese remaindering for rational reconstruction in
the presence of errors. We consider a sequence of prime moduli py, ..., p, and a rational number
r = f/g with g > 0. The goal is to recover r from a vector (1;);<;<;, where r; = r mod p; for a
certain number of lucky primes p;. We tolerate a number of errors or missing values (e.g., for
which p; divides g), for which we write r; = oo, for a new symbol co; the corresponding primes
are unlucky. Consider the following integers:

+ N=3L;logy(p)
« L= 21§i§r7,pi unlucky prime 10g2(Pi)-
« His a given upper bound on the height of 7, that is, log,(| f|),log,(g) < H

Then, Pernet proved in [3, Lemma 2.5.4] that if L < (N — 2H + 1)/2, one can reconstruct r given
the r;’s [3, Algorithm 2 p.38]. Bohm et al. proved similar results.

Although these statements are well-established, to our knowledge, the following conse-
quences, while relatively straightforward, are new. We provide a quantitative analysis which
gives explicit sufficient conditions on the number of primes and their size to guarantee an
arbitrary probability of success, in a model where we assume we can pick primes uniformly at
random in a given interval.

Stating this result requires us to take all primes into consideration. Thus, r and the upper
bound H are as above, and to each prime p € IN corresponds a value r(p) (possibly); p s called
lucky when r(p) = r mod p and unlucky otherwise. We assume that there are finitely many
unlucky primes and let U be their product. In addition to the output size bound H, we then
need a bound C such that log,(U) < C. Both Hand C are problem-dependent (we discuss a few
examples in the next section); once bounds on H and C are available, the following propositions
apply.

In what follows, for simplicity, given an interval 3 = {o, ..., 20}, we assume that we can
sample 1 primes in ¥ uniformly without replacement, as long as this interval is known to
contain at least n primes.

Proposition 1. Let r,H,C be as above. For e > 0, let o and n be integers such that ¢ >
max(16, %C, 16H) andn = [102%] Select pairwise distinct primes py,..., p,; independently
2

and uniformly at random from the set ¥ = {0, ..., 20}. Then, with probability at least 1 — €, given
(r(p1), ..., 7(py)), one can reconstruct r.

Proof. Let & denote the set {p | p € ¥ and Umod p = 0}, and notice that the product Hpe@ p
also divides U, so that in particular [| peo P < U. Each prime in X is at least equal to o, so that

15

o
2log,(o)

49 < —C __ On the other hand, the number of primes in ¥ is at least

~ log,(o)”
. . (C/logy(0)) _ 2C
that for a prime p chosen at random in %, P(p|U) < Glabgo) ~ o

Now, we choose 7 distinct primes py, ..., Py uniformly at random in ¥, and fori = 1, ...,5, we
let X; be the indicator variable defined as

[4, Ex. 18.18], so

"o otherwise,
so that E[X;] = P(X; = 1) < 2C/o. Define further X = Z?:l X;, so that E[X] < 2nC/o. Now,
for any choice of 7 distinct primes (p;) in %, the quantities N and L defined above satisfy
N = Z?Zl logy(pi) > nlogy(o) and L = 21gigry,pi unlucky prime log,(p;) < logy(20)X. From [3,
Lemma 2.5.4] as cited above, we know that the error-tolerant rational reconstruction algorithm
succeeds as soon as L < (N — 2H + 1)/2, and in particular as soon as log,(20)X < A =
(nlog,(0) — 2H + 1)/2. We will point out below that for our choice of 5, A is positive.

Then, the probability of failure is at most P (log,(20)X > A) = P (X > A/ log,(20)), which
by Markov’s inequality is at most E[X]/ (A/log,(20)). We deduce

P(fail) S(%)(2log,(20)) L 8C_nmlogy(o) _sc 1

o nlog,(c) —2H +1 _;rylogz(d)—ZH_;l_L'

nlog,(o)

Now, take = [4H/log,(0)], so that in particular > 4H /log,(o), and thus 2H /(nlog,(c)) <
1/2, in which case the right-most factor in the inequality above is at most 2. Besides, this
choices ensures A > 0. To summarize, in this case, we have P(fail) < 16C/0, and this can be
made less than € as soon as o > 16C/e.

It remains to verify that our interval ¥ contains at least 5 primes. We know that there are
at least 0 /2log,(0) such primes, and that 5 is at most 4H / log,(c) + 1, and one checks that if
o > 16 and o > 16H, this is indeed less than or equal to o/21og,(c). O

Remark 2. In the context of a modular algorithm, the most important component in the cost
analysis is the total time spent solving the problem modulo the primes p;. In rough approximation,
one can assume that each such execution takes T operations modulo p;, where T is independent of i.
It follows that the total boolean cost is softly-linear in T 3,1 ;< 1og,(p;) € ©(Tnlog(0)).

4H _
log,(0) + 1)log,(0) = 4H + log,(0). In other words,

the boolean cost involves both the output size H, which is as expected, together with log,(c), which
will increase if we take € close to zero.

In our construction, we have nlog,(c) < (

Remark 3. Assume that we do not use error-correction. In this case, in order to be able to reconstruct
r, we need all primes to be lucky. With notation as in the proposition, we saw that the probability
that a single prime is unlucky is at most 2C/o, so when choosing n primes, the probability that at
least one of them is unlucky is at most

-(-(5) < T

16

Assuming we choose 1 as above, let us derive a bound on o that ensures 2nC/o < €. We proceed
informally and take n = 4H/log, (o), so our inequality is satisfied when 8CH/(clog,(0)) < e.
Hence we require that olog,(0) > 8HC/€; this gives o > R(8HC/€), where R is the reciprocal
function of x = xlog,(x). This function grows like x / In(x), for x — oo, which gives asymptotically
o > 8HC/(eIn(8HC/€)). As expected, this is inferior to the bound given in the previous proposition.

3. Applications

We end this note with a quick description of possible use cases of this work.

Computing Hermite forms over Q[x]. In [5], Storjohann gives a modular algorithm to
compute Hermite forms for matrices with entries in Q[x], together with bounds H on the output
size and C on the unlucky primes. Our work applies directly to this situation. We are not aware
of alternative methods that would rely on Newton iteration.

Computing lexicographic Grobner bases in Q[x, y]. In [6], St-Pierre and Schost provide
similar bounds H and C for the computation of bivariate Grébner bases; again, our work applies
directly. In this case, an alternative approach based on Newton iteration exists, but has rather
high complexity.

Solving zero-dimensional systems in Q[x,...,x,]. The main application we have in mind
is the solution of zero-dimensional polynomial systems (by means of a data-structure known as
a zero-dimensional parametrization, see [7] for a definition and references). When the complex
solutions have multiplicity one, a simple form of Newton iteration is applicable [8], but without
this assumption, lifting techniques are complex to analyze. In this case, a bound H on the output
size is available by means of the arithmetic Bézout theorem, but the unlucky primes are harder
to describe. The reference [9] quantifies primes p for which the number of solutions changes
modulo p, but further arguments are needed to control other possible degeneracies.

References

[1] J. Bohm, W. Decker, C. Fieker, G. Pfister, The use of bad primes in rational reconstruction,
Math. Comput. 84 (2012) 3013-3027.

(2] J. Bohm, W. Decker, C. Fieker, S. Laplagne, G. Pfister, Bad primes in computational algebraic
geometry, in: Mathematical Software — ICMS 2016, Springer, 2016, pp. 93-101.

[3] C.Pernet, High Performance and Reliable Algebraic Computing, HDR, Université Joseph
Fourier, Grenoble 1, 2014. URL: https://theses.hal.science/tel-01094212.

[4] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, third ed., Cambridge University
Press, 2013.

[5] Storjohann, A., Computation of Hermite and Smith Normal Forms of Matrices, Master’s
thesis, University of Waterloo, 1994.

[6] E.Schost, C. St-Pierre, p-adic algorithm for bivariate grobner bases, in: ISSAC’23, ACM,
2023, p. 508-516. doi:10.1145/3597066.3597086.

17

https://theses.hal.science/tel-01094212
http://dx.doi.org/10.1145/3597066.3597086

[7] E. Schost, M. S. E. Din, Bit complexity for multi-homogeneous system solving application
to polynomial minimization, Journal of Symbolic Computation 87 (2018) 176-206.

[8] W. Trinks, On improving approximate results of buchberger’s algorithm by newton’s
method, SIGSAM Bull. 18 (1984) 7-11.

[9] C.D’Andrea, A. Ostafe, I. Shparlinski, M. Sombra, Reductions modulo primes of systems of
polynomial equations and algebraic dynamical systems, Trans. Amer. Math. Soc. 371 (2019)
1169-1198.

18

Functional Decomposition of Sparse Polynomials
(Short Talk Abstract)

Mark Giesbrecht
Cheriton School of Computer Science, University of Waterloo, Canada

Keywords
Computer algebra, sparse polynomials, complexity.

We consider the algorithmic problem of functionally decomposing sparse polynomials. For example,
given a (ridiculously) high degree (5 - 21°°) and very sparse (7 terms) polynomial such as:

f(l) _ xs_zwo 15 CE2102+247 190 x342100+248 4270 x2101+3,247 4405 - m2100+249 1943 x5,247 41

we ask how to determine quickly whether it can be written as a composition of lower degree polynomials
such as

fz) =g(h(@)) =goh=(a"+1)o (z*" +327"),

and if so, to generate such a decomposition.

That such decompositions remain sparse was first conjectured for perfect powers in 1949 by Erdés
[3], but not proven until 1987 by Schinzel [9]. Zannier [10] then generalized this theory to functional
decompositions.

Computationally, we have had algorithms for functional decomposition of (dense) polynomials since
Barton & Zippel [2] in 1976. The first polynomial-time (in the degree) algorithms appeared in 1986
by [7], at least in the “tame” case, where the characteristic of the underlying field does not divide the
degree, and an almost linear time algorithm was shown later in [4]. In fact, we can now show that,
except for a very specific class of polynomials, Barton & Zippel’s algorithm runs in polynomial time in
the degree [5]. Polynomial-time algorithms for the (dense) “wild” case and rational functions have now
been been developed, most completely in [1].

Algorithms for polynomial decomposition that exploit sparsity have remained elusive until recently
(see [6, 8]). We want algorithms that run in time polynomial in the representation size — the length/loga-
rithm of the exponents and coefficients of the non-zero terms of the input (and output). In this talk I
will present some new algorithms which meet this goal, and provide very fast and simple solutions to
some polynomial decomposition problems, such as the example above. These new methods require
time quadratic in the number of non-zero terms in the input and output, and in the logarithm of the
degree and coefficients.

Many open algorithmic problems remain for sparse polynomials, including detecting indecomposabil-
ity, the “wild” case, and rational functions. We show connections to the well-known open (and possibly
intractable) problems of sparse polynomial divisibility and irreducibility. There is also considerable
room to tighten bounds in the underlying mathematics (and thereby improve the cost), as well as to
explore a broader class of sparsely represented functions [8].

This is ongoing work with Saiyue Liu (UBC) and Daniel S. Roche (USNA).

References

[1] L. Allem, J. Capaverde, M. van Hoeij, J. Szutkoski, Functional decomposition using principal
subfields, in: Proc. 2017 ACM International Symposium on Symbolic and Algebraic Computation,
Association for Computing Machinery, New York, NY, USA, 2017, pp. 421-428.

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024, Tokyo, Japan
Q& mwg@uwaterloo.ca (M. Giesbrecht)

PN

&’ https://uwaterloo.ca/~mwg (M. Giesbrecht)

© 2024 This work is licensed under a “CC BY 4.0” license.
5

19

mailto:mwg@uwaterloo.ca
https://uwaterloo.ca/~mwg
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

[2] D.Barton, R. Zippel, A polynomial decomposition algorithm, in: Proceedings of the third ACM
symposium on symbolic and algebraic computation, SYMSAC ’76, 1976, pp. 356—358.

[3] P.Erd8s, On the number of terms of the square of a polynomial, Nieuw Arch. Wiskunde (2) 23
(1949) 63-65.

[4] J. von zur Gathen, D. Kozen, S. Landau, Functional decomposition of polynomials, in: Proc. 28th
Ann. IEEE Symp. Foundations of Computer Science, Los Angeles CA, 1987, pp. 127-131.

[5] M. Giesbrecht, J. May, New algorithms for exact and approximate polynomial decomposition, in:
Proc. International Workshop on Symbolic-Numeric Computation (SNC), 2005, pp. 99-112.

[6] M. Giesbrecht, D. S. Roche, Detecting lacunary perfect powers and computing their roots, Journal
of Symbolic Computation 46 (2011) 1242-1259.

[7] D.Kozen, S. Landau, Polynomial Decomposition Algorithms, Technical Report 86773, Department
of Computer Science, Cornell University, Ithaca NY, 1986.

[8] S. Lyu, Faster algorithms for sparse decomposition and sparse series solutions to differential
equations, Master’s thesis, U. Waterloo, Waterloo, ON, Canada, 2022.

[9] A. Schinzel, On the number of terms of a power of a polynomial, Acta Arith. 49 (1987) 55-70.

[10] U. Zannier, On composite lacunary polynomials and the proof of a conjecture of Schinzel, Inven-

tiones Mathematicae 174 (2008) 127-138.

20

Towards Trajectory Planning of a Robot Manipulator with
Computer Algebra using Bézier Curves for Obstacle
Avoidance”

Ryo Hatakeyama!, Akira Terui®* and Masahiko Mikawa?

Master’s Program in Mathematics, Graduate School of Science and Technology, University of Tsukuba, Tsukuba
305-8571, Japan

2Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
3Institute of Library, Information and Media Science, University of Tsukuba, Tsukuba 305-8550, Japan

Abstract

This paper discusses the trajectory planning of a robot manipulator with computer algebra. In the
operation of robot manipulators, it is important to make the trajectory of the end effector so that it
does not collide with obstacles. For this purpose, we have proposed a method of generating a method
of trajectory planning using cubic spline curves. However, the method has the disadvantage that the
trajectory may not be included in the feasible region of the manipulator, thus an extra test for the
inclusion of the curve is needed. In this paper, we propose a new method of generating a trajectory
using Bézier curves, which is guaranteed to be included in the feasible region.

Keywords

Trajectory planning, Quantifier elimination, Inverse kinematics, Bézier curves

1. Introduction

In this paper, we discuss the trajectory planning of a robot manipulator with computer algebra. A
manipulator is a robot with links, which correspond to human arms, and joints, which correspond
to human joints, connected alternately. The end effector is the component located at the tip
of the link that is farthest from the base of the manipulator. The inverse kinematics problem
examines whether it is possible to place the end effector at a given point and orientation, and if
it is possible, the problem is to find the joint configuration for that placement. The trajectory
planning problem is to find a path for the end effector to move from the start point to the
endpoint without colliding with obstacles.

There are numerous methods for solving the inverse kinematics problem of manipulators
using computer algebra proposed to date [1, 2, 3, 4, 5, 6]. Among them, we have proposed one
that enhances computation efficiency with the use of Comprehensive Grébner Systems (CGS)
[7], and certifies the existence of solutions to inverse kinematics problems using the Quantifier
Elimination (QE) which is based on the CGS, so-called the CGS-QE [8] method [9]. Furthermore,
we have extended the method to trajectory planning using a straight-line path [10].

By using the straight-line path, the trajectory may interfere with obstacles. Therefore, it is
possible to design the trajectory to avoid obstacles using a polyline, but doing so may result in
discontinuities in velocity and acceleration of the manipulator at the vertices of the polyline,
which could destabilize the operation. To achieve smooth movement of the end effector, we have

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024,
Tokyo, Japan

"This work was partially supported by JKA and its promotion funds from KEIRIN RACE.

*Corresponding author.

& 52320143@u.tsukuba.ac.jp (R. Hatakeyama); terui@math.tsukuba.ac.jp (A. Terui); mikawa@slis.tsukuba.ac.jp

(M. Mikawa)

& https://researchmap.jp/aterui (A. Terui); https://mikawalab.org/ (M. Mikawa)
® 0000-0003-0846-3643 (A. Terui); 0000-0002-2193-3198 (M. Mikawa)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International
. (CC BY 4.0).

21

mailto:s2320143@u.tsukuba.ac.jp
mailto:terui@math.tsukuba.ac.jp
mailto:mikawa@slis.tsukuba.ac.jp
https://researchmap.jp/aterui
https://mikawalab.org/
https://orcid.org/0000-0003-0846-3643
https://orcid.org/0000-0002-2193-3198
https://creativecommons.org/licenses/by/4.0/deed.en

oG

Figure 1: The feasible region of the manipulator. Figure 2: Defining the radius of the feasible region.

proposed trajectory planning using a spline curve [11]. However, the spline curve may not be
included in the feasible region of the manipulator, thus an extra test for the inclusion of the
curve is needed.

In this paper, we propose methods for trajectory planning using Bézier curves. The shape of a
Bézier curve is determined by the placement of control points, and the curve has the property of
always being contained within the convex hull formed by the control points as vertices. Utilizing
this property, the goal is to generate trajectories that avoid obstacles without deviating from the
feasible region. Although several proposals have been made for the use of Bézier curves in general
trajectory planning [12, 13, 14], to the best of the authors’ knowledge, the utilization of Bézier
curves in trajectory planning using computer algebra is considered to be almost nonexistent.

This paper is organized as follows. In Section 2, we introduce the feasible region of the
manipulator and define the radius of the region. In Section 3, we introduce the Bézier curve and
its properties. In Section 4, we propose two methods for trajectory planning using Bézier curves.
In Section 5, we conclude and discuss future research direction.

2. Preliminaries

In this paper, the manipulator to be used is placed on the real space R with the global coordinate
system, whose origin is located at the base of the manipulator. Assume that the end effector
can be placed anywhere in the feasible region except the origin (see fig. 1).

The feasible region refers to the range that the end-effector of the manipulator can reach.
Here, we assume that the feasible region of the manipulator is given as the surface and the
interior of a hemisphere with the origin as the center and positive z coordinates.

As for the radius of the region, we define a value different from the radius that the actual
manipulator can execute. In this case, we will define the radius by comparing the distances
between the origin and the start and the endpoints of the end effector, and the farthest of the
passing points, as described below.

An example is shown in fig. 2. Let us consider a trajectory with the start point S and the
endpoint G that passes through two predetermined points C; and C,. Assume that we have
verified the end-effector can reach all the points except for the origin O by, for example, the
method we have previously proposed [10]. S,Cy,Cy, and G are located as in fig. 2 with respect to
the origin O. In this case, the point farthest from O among these is C,. Therefore, the distance r
between O and C, is defined as the r, radius of the feasible region. We see that, by the radius r
in this way, the end-effector will of course be able to reach a point closer than the point where
the end-effector is already determined to be placed.

3. The Bézier Curve

The Bézier curve [15] is a parametric curve on which the point is expressed as a polynomial
function of the parameter t, defined as follows.

22

b e op,

PO /\. P3

Figure 3: Construction of a 3-degree Bézier Curve.

Definition 1. Let Py, Py, ..., P, be different points. Then, the N-degree Bézier Curve P(t) is defined

as
n

n\ . .

P =), (.)t‘(l —ty"7'p, 0<1<1,

4 i
i=0

where Py, Py,..., P, are the control points. Note that the curve starts at Py and ends at P,.

The method employs control points for producing the curve. Note that the curve does not
pass through the control points except for the start and the endpoint but is attracted by them.
It is as if the points exert a pull on the curve.

An n-degree Bézier Curve is constructed as follows (for an example of a 3-degree Bézier curve,
see Figure 3). First, place n+ 1 control points Py, Py, ..., P,, and take points Q(l), §1), ,51_)1
that divide the line segment PyP;, P{P,,..., P,_1P, internally into t : 1 —t, respectively. Next, take

©) (2) (1)~ (l)Q(l) (1) HM
1

points Q(z), 1., Qpy that divide the line segments Q, "O; b s Qn29Qn 1, internally

into t : 1 —t, respectively. Repeat the same operation for n times to obtain Q(()n), then the locus

of is Q(()n) for 0 <t <1 constructs the Bézier Curve.

One of the advantages of using Bézier Curves is the convex hull property of the curves [13].
For the convex hull A ={Y"_ P | Yio¢ = 1,0 < ¢ < 1} of the control points Py, P, ..., Py, we
see that any point on the Bézier Curve P(¢) is included in A. In other words, if a polyhedron
with each control point as a vertex is included in the feasible region, the Bézier Curve obtained
from those control points is also included in the region. This idea will be used in our second
method proposed below.

4. Path planning using Bézier curves

We propose two methods for trajectory planning using Bézier curves. In the methods, we settle
the following assumptions: In addition to the start and the endpoints, two points that the curve
must pass through are given. Those points have the same y and z coordinates, respectively.

4.1. Method 1: path planning with single Bézier curve

In the first method, we construct a path with a single Bézier curve. We give the x coordinates of
the control points equally distributed and select the control points using equality and inequality
evaluation. Furthermore, we consider only the case where the curve is curved in the positive
direction in both y and z coordinates.

If an n-degree Bézier Curve in R3 is represented as P(t) = (Py(2), Py(t), P,(t)), each component is
expressed as

n n n

an)zz(’i’)tl‘(l—t)"—fxi, Py(t)zzc)tf(l—t)"—fyi, PZU)ZZ(’Z)tf(l—t)"-"zi, (1)

i=0 i=0 i=0

using the control points Pi(x;, y;,z) (i = 0,1,...n). Here, we define the x coordinates of each control
point satisfying that P,(t) is a linear polynomial in ¢t. This approach has the advantage that it
not only reduces the amount of calculation required to create the trajectory but also makes the
operation of “finding the value of t from the x coordinate of a point on the curve” easier.

23

Figure 4: Position of (a,h,) and (b, h,).

To achieve this objective, simply place the x coordinates xg, x1, ..., x, of each control point in
order at equal intervals, i.e., for i =0,1,...,n, let

n—i)xy+ix
:()0 n

X
n
Substituting x; into P(t) in eq. (1) gives
P(t) = (1 = t)xp + txy,. (2)

Next, we define the y and z coordinates of each control point. In eq. (2), denote the x coordinate
of a point on the curve simply as P(t) = x, and solve eq. (2) for ¢, then we have

X — Xy
t =

: (3)

Xn — X0

Now, assume that there is an obstacle in the feasible region, and to avoid it, the y and z

coordinates of the path must always exceed a certain value hy, > 0 and h, > 0, respectively, in

the interval [a,b] in the x coordinate, where x, <a < xp1 <% <b<xg for 1< p<g+1<n

(see Figure 4). Substituting x = a and b for eq. (3) and denoting them as t, and #,, respectively,
we obtain

a— x b—x,

l, = , = .
Xn — Xo Xn — X0

For the y coordinate of the curve, among the tuples of y;, ys, ... y,—1 that satisfy the following
equalities and inequalities:

Py(ta) = Py(tb) = hy’ Yo < Vis - ’yp’ hy < yp+ls 5yq’ In < yq+1’ o Yn—1 (4)

select the one with the smallest sum EZ: o1 Ve The reason for selecting the tuple with the
smallest sum is to minimize the bulge in the positive direction of the y coordinate of the curve.
Furthermore, to prevent each y; value from becoming too small, a lower limit is set as constraints
in eq. (4) so that it does not fall below the coordinate of the starting point before crossing the
obstacle, and the coordinate of the endpoint after crossing the obstacle.

For the z coordinate of the curve, z;, z3, ..., z,_1 can be calculated in the same way as y;, ¥2, ... Vu—1
are calculated in above, simply by replacing y; with z;. After obtaining yi,ys,... o1 and
21,2, .., Zn—1, put these values into P(t) and P,(#) in eq. (1), respectively, which gives the
coordinates of all control points, thus the curve becomes the trajectory of the end effector.

The advantage of this method is that the x coordinate of a point on the curve is expressed as a
linear polynomial ¢, thus the value of ¢ can easily obtained from x as in eq. (3), and the curve can
be flexibly designed according to the position and the size of the obstacles. However, at present,
it is not guaranteed that the curve will be included in the feasible region, thus improvements of
the method are required, such as not only suppressing the bulge of the curve but also adding
new constraints so that the curve will be included in the feasible region.

24

4.2. Method 2: path planning with multiple Bézier curves

The second method is to construct a path connecting multiple 3-degree Bézier curves calculated
under certain conditions. We use a Bézier curve of degree 3 because it is the curve of the smallest
degree whose curvature can be controlled. This method makes effective use of the convex hull
property mentioned above since it is guaranteed that the created curves do not go outside the
feasible region.

We consider the connection of three cubic Bézier Curves P(t),Q(t), and R(t), where

3 3 3

P(t)=2(?>ti(l—t)3‘iPi, Q(t)=2(j)ti(1—t)3‘iQi, R(t)zZ(?)tf(l—t)’j—iRi. (5)

=0 i=0 i=0

Assume that, in eq. (5), P, Q;, R; € R* and we consider P(t), Q(t), R(t) as vector-valued polynomials.
As with the method in Section 4.1, we aim to draw a curve in which the y and the z coordinates
exceed a certain value in a certain interval in the x coordinate, by drawing the first curve P(t)
from the starting point to that interval, the second curve Q(t) avoiding the obstacles, and the
third curve to the endpoint.

Since the endpoint of P(t) and the start point of Q(¢), and the end point of Q(¢) and the start
point of R(¢) are identical, respectively, we have P(1) = Q(0) and Q(1) = R(0), i.e., P; = Q, and
Q3 = Ry. In this path planning, we aim to express the other control points using the predefined
points Py, Qg, Ry, R3.

To make the connection smooth, we settle a constraint that the first and second derivatives at
the connection points are equal for two adjacent curves, respectively. The necessary and sufficient
conditions for P’(1) = Q’(0) and Q’(1) = R’(0) to hold are 2Q, = P, +Qy, 2Ry = Qs+ Ry, respectively.
Similarly, the necessary and sufficient conditions for P”(1) = Q”(0) and Q”(1) = R”(0) to hold
are 2(Q; — Py) =0y — P;, 2(R; — Qy) = Ry — Qy, respectively [16]. So far, we see that the control
points P;, P, R{, Ry depend on Q; and Q, as

Py =40y —401+Qy, Py =200— 01, Ry =2Ry—0Qs, Ry=0;—40; +4R,. (6)

Now we determine Q; and Q,. Let the feasible region be a hemisphere with a radius
r = max{|Py|, |Qol, IRol, R3]} centered at the origin and with z > 0. Here, | - | represents the
norm of the vector. We require all remaining control points to be included in this hemisphere,
ie.,
IPl<r, lQl<r, IRI<r (i=12),

which is reduced to solve the problem to find Q; and Q, that satisfy the above conditions. This
problem is expressed as eliminating quantified variables in a quantified formula

3P13P,3R;3Ry((Py = 4Qp — 4Q; + Qp) A (Py = 20y — Q1) A(Ry = 2Ry — Qp) A (Ry = Q1 — 4Q, + 4R)
AP ED)AUP] S A0 S) AUl SV AR S) AR S 1)) (T7)

After solving eq. (7) and conditions on Q; and Q, are obtained, then choose Q; and Q, that
makes [Q; — Qpl? + |Q; — Q11 + |Ry — Q)% as small as possible satisfying eq. (7), Then the rest of
the control points Py, Py, Py, Qy, Ro, Ry, Ry, R3 are determined, and the path of the end effector is
obtained.

This method is promising since, if eq. (7) is solved, it gives a path that does not go beyond the
feasible region and passes two points through for obstacle avoidance. Unfortunately, quantifier
elimination for eq. (7) is computationally expensive and, at present, has not yet been successful.
Therefore, by relaxing the original problem, we propose an alternative method to define a path
in practical time.

25

4.2.1. Using 2-degree Bézier curves
In the alternative method, we create a path using three 2-degree Bézier Curves

2 2 2
P =Y (2.)#‘(1 —0ih, 0w =Y (2.)#(1 0, k=Y (2)t,~(1 iR,

i=0 \! i=0 \! i=0 \!
in place of P(t),Q(¢), R(t) in eq. (5), respectively, whose first-order differentials are identical at the
connection points, together with Pz = QO,QZ = IAQO. Now we determine the other control points
using only the predefined Py = Py, 0y = Q. Ry = Ry, Ry = Rs. Since the first derivatives at the
connection points are the same for two adjacent curves, we have ZQO = 131 + Ql, Zﬁo = Q1 + ﬁl.
Forr := max{||f’0||, ||Q0||, ||ﬁ0||, ||1A23||}, we require all remaining control points to be included in the
hemisphere centered at the origin with radius r, i.e., || <r,|0;] < r,|R{] < r. Then, the problem
is reduced to eliminate quantified variables in a quantified formula

3P 3R, ((Py = 20y — O1) A (Ry = 2Ry — O) A (1P| < 1) A (I0s] < 7) A (IR, < 7). (8)

Fortunately, by quantifier elimination, we have obtained the possible region of Q; that satisfies
eq. (8), then three Bézier Curves were obtained in the same way as described in the cubic
Bézier Curves case. (The computation was done using the computer algebra system Wolfram
Mathematica 13.3.1 in approximately 15.4 [s]. The computing environment is as follows: Intel
Core 13-8130U 2.20GHz, 8GB RAM, Windows 11 Home.)

5. Concluding Remarks

We have proposed two methods for trajectory planning of manipulators using Bézier curves so
that the generated curve does not go outside the feasible region. The first method can avoid
obstacles with a minimum curve that matches the position and size of the obstacle, but it does
not guarantee that any point on the curve is included in the region. The second method can
guarantee that the curve does not go outside the region based on the constraint conditions, but
its calculation cost is high and the position of the control point has not yet been obtained. To
overcome this, we have proposed an alternative method using 2-degree Bézier curves, which can
be calculated in a practical time.

Our future work includes the establishment of a better method for selecting the control points
of a curve that overcomes current issues. We believe that method 2 is promising since the curve
generated by the method is guaranteed to be included within the feasible region. The next issue
to be solved is to improve computational efficiency by deriving more appropriate constraints,
making the algorithm more efficient, and so on.

Once this method is established, we will move on to the stage of calculating the sequence
of joint placements for the completed trajectory, leading to improved trajectory planning as
proposed in our previous work [10].

References

[1] J. Capco, M. S. E. Din, J. Schicho, Robots, computer algebra and eight connected
components, in: Proceedings of the 45th International Symposium on Symbolic and
Algebraic Computation, ISSAC ’20, ACM, 2020. doi:10.1145/3373207.3404048.

[2] J.-C. Faugere, J.-P. Merlet, F. Rouillier, On solving the direct kinematics problem for parallel
robots, Research Report RR-5923, INRIA, 2006. URL: https://hal.inria.fr/inria-00072366.

[3] C. M. Kalker-Kalkman, An implementation of Buchbergers’ algorithm with applications to
robotics, Mech. Mach. Theory 28 (1993) 523-537. doi:10.1016/0094-114X(93)90033-R.

26

http://dx.doi.org/10.1145/3373207.3404048
https://hal.inria.fr/inria-00072366
http://dx.doi.org/10.1016/0094-114X(93)90033-R

4]

15]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Ricardo Xavier da Silva, L. Schnitman, V. Cesca Filho, A Solution of the Inverse
Kinematics Problem for a 7-Degrees-of-Freedom Serial Redundant Manipulator Using
Grobner Bases Theory, Mathematical Problems in Engineering 2021 (2021) 6680687.
doi:10.1155/2021/6680687.

T. Uchida, J. McPhee, Triangularizing kinematic constraint equations using Groébner
bases for real-time dynamic simulation, Multibody System Dynamics 25 (2011) 335-356.
doi:10.1007/s11044-010-9241-38.

T. Uchida, J. McPhee, Using Grobner bases to generate efficient kinematic solutions for
the dynamic simulation of multi-loop mechanisms, Mech. Mach. Theory 52 (2012) 144-157.
doi:10.1016/j.mechmachtheory.2012.01.015.

V. Weispfenning, Comprehensive Grobner Bases, J. Symbolic Comput. 14 (1992) 1-29.
doi:10.1016/0747-7171(92)90023-W.

R. Fukasaku, H. Iwane, Y. Sato, Real Quantifier Elimination by Computation of Compre-
hensive Grobner Systems, in: Proceedings of the 2015 ACM on International Symposium
on Symbolic and Algebraic Computation, ISSAC ’15, Association for Computing Machinery,
New York, NY, USA, 2015, pp. 173-180. doi:10.1145/2755996.2756646.

S. Otaki, A. Terui, M. Mikawa, A Design and an Implementation of an Inverse Kinematics
Computation in Robotics Using Real Quantifier Elimination based on Comprehensive
Grébner Systems, Preprint, 2021. doi:10.48550/arXiv.2111.00384, arXiv:2111.00384.

M. Yoshizawa, A. Terui, M. Mikawa, Inverse Kinematics and Path Planning of Manipulator
Using Real Quantifier Elimination Based on Comprehensive Grobner Systems, in: Computer
Algebra in Scientific Computing: CASC 2023, volume 14139 of Lecture Notes in Computer
Science, Springer, 2023, pp. 393-419. doi:10.1007/978-3-031-41724-5_21.

Y. Shirato, N. Oka, A. Terui, M. Mikawa, An Optimized Path Planning of Manipulator
with Spline Curves Using Real Quantifier Elimination Based on Comprehensive Grobner
Systems, in: SCSS 2024 Work-in-progress Proceedings, Open Publishing Association, 2024.
To appear.

U. Dincer, M. Cevik, Improved trajectory planning of an industrial parallel mechanism by
a composite polynomial consisting of bézier curves and cubic polynomials, Mechanism and
Machine Theory 132 (2019) 248-263. doi:10.1016/j.mechmachtheory.2018.11.009.

Y .-L. Kuo, C.-C. Lin, Z.-T. Lin, Dual-optimization trajectory planning based on parametric
curves for a robot manipulator, International Journal of Advanced Robotic Systems 17
(2020) 1729881420920046. doi:10.1177/1729881420920046.

Z. Xu, S. Wei, N. Wang, X. Zhang, Trajectory planning with bezier curve in cartesian space
for industrial gluing robot, in: X. Zhang, H. Liu, Z. Chen, N. Wang (Eds.), Intelligent
Robotics and Applications, Springer International Publishing, Cham, 2014, pp. 146-154.
do0i:10.1007/978-3-319-13963-0_15.

P. Bézier, The Mathematical Basis of the UNIURF CAD System, Elsevier, 1986. doi:10.
1016/C2013-0-01005-5.

T. Tsuchihashi, Trajectory Generation and Control for Manipulator Using the Bezier Curve
(in Japansese), Transactions of the Japan Society of Mechanical Engineers Series C 55 (1989)
124-128. doi:10.1299/kikaic.55.124.

27

http://dx.doi.org/10.1155/2021/6680687
http://dx.doi.org/10.1007/s11044-010-9241-8
http://dx.doi.org/10.1016/j.mechmachtheory.2012.01.015
http://dx.doi.org/10.1016/0747-7171(92)90023-W
http://dx.doi.org/10.1145/2755996.2756646
http://dx.doi.org/10.48550/arXiv.2111.00384
http://dx.doi.org/10.1007/978-3-031-41724-5_21
http://dx.doi.org/10.1016/j.mechmachtheory.2018.11.009
http://dx.doi.org/10.1177/1729881420920046
http://dx.doi.org/10.1007/978-3-319-13963-0_15
http://dx.doi.org/10.1016/C2013-0-01005-5
http://dx.doi.org/10.1016/C2013-0-01005-5
http://dx.doi.org/10.1299/kikaic.55.124

Algebraic (non) Relations Among Polyzetas

V. Hoang Ngoc Minh'

JUniversity of Lille, 1 Place Déliot, Lille, 59024, France

Abstract

Two confluent rewriting systems in noncommutatives polynomials are constructed using the equations allowing
the identification of the local coordinates (of second kind) of the graphs of the ¢ polymorphism as being (shuffle
or quasi-shuffle) characters and bridging two algebraic structures of polyzetas.

In each system, the left side of each rewriting rule corresponds to the leading monomial of the associated
homogeneous in weight polynomial while the right side is canonically represented on the algebra generated by
irreducible terms which encode an algebraic basis of the algebra of polyzetas.

These polynomials are totally lexicographically ordered and generate the kernels of the { polymorphism
meaning that the free algebra of polyzetas is graded and the irreducible polyzetas are transcendent numbers,
algebraically independent.

Keywords

Polylogarithms, Hamonic Sums, Polyzetas, Rewritting Systems

1. Introduction

For any r > 1 and (s1,...,8,) € N>j,forany z € C\ {0,1} andn > 1, let
. an n 1
L1817---7Sr(2) = Z 51 s, and Hsla---75r(n) = Z W (1)
ni>.>ne>0 L T <Ny

ni>..>n>0 1

which are respectively called polylogarithm and harmonic sum.
Let H, be {(s1,...,8-) € N§, 81 > 1}. Then, for any (s1,. .., s,) belonging to H,, by a Abel’s
theorem, the following limits exist and are called polyzetas' [9, 10]

C(S1,-0.,8r) = zl'l—% Lis, . s.(2) = lim Hg s (n)= Z nytooon (2)

n—-+00
niy>...>n>0

Euler earlier studied polyzetas, in particular {((s1, 52)}le>1 1.s,>1 in classic analysis. He stated that
¢(6,2) can not be expressed on ((2), ..., ((8) and proved [6] B

s—2
1 . .
((2:1) =¢(3) and ((s,1) = (sC(s+ 1) =D CG+1)(s —4)),s > 1. 3)
j=1
The {((s1,. .. ,sr)]>212>11’$2,MST21 are also called multi zeta values (MZV for short) [13] or Euler-

Zagier sums [2] and the numbers 7 and s + . . . + s, are, respectively, depth and weight of ((s1, ..., sy).
One can also found in their biographies some recent applications of these special values in algebraic
geometry, Diophantine equations, knots invariants of Vassiliev-Kontsevich, modular forms, quantum
electrodynamic,

Many new linear relations for polyzetas are detected using LLL type algorithms in high performance
computing and the truncations of {((s,..., ST)}ZELSQ,...,STEP ie. {HSIW,ST(n)}glill’s%wsr21 (1,
2]. In this approach, the main problem is to detect with near certainty which polyzetas can not be

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024, Tokyo, Japan
& vincel hoang-ngoc-minh@univ-lille.fr (V. Hoang Ngoc Minh)

® 0000-0002-3510-7639 (V. Hoang Ngoc Minh)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Polyzeta is the contraction of polymorphism and of zeta (see (5)-(6) below).

28

mailto:vincel.hoang-ngoc-minh@univ-lille.fr
https://orcid.org/0000-0002-3510-7639
https://creativecommons.org/licenses/by/4.0/deed.en

expressed on {((2),...,((s + k)} and are qualified as new constants (as for Euler’s ((6, 2)) [2]. Such
polyzetas could be Q-algebraically independent on these zeta values (see Example 1 below) and the
polyzetas could be transcendent numbers (see [9, 10] for proof). Checking linear relations among
{¢(s1,---, sr)}721 .op>1, Zagier stated that the Q-module generated by MZV is graded (see [9, 10]

s1>1,59,.
2<s1+...+sp<12

for proof) and guessed (see [7, 8, 12] for other algebraic checks)

Conjecture 1 ([13]). Let d := dim Z and Z, := spanQ{Q(w)}Z?iLsz """ o>15 Jor k > 1. Then
s1+...+sr==k

dy = 0,dy = dy = 1 and dj, = dy_s + dj_o, fork > 4. '

Studying Conjecture 1, in continuation with [3, 5] by a symbolic approach, this work provides more
explanations and consequences regarding the algorithm LocalCoordinateldentification, partially
implemented in [3] and briefly described in [4].

It applies an Abel like theorem concerning the generating series of {Hj, s, ;21 s.>1 (resp.

{Lis, ... s 75412,.1.‘,391) [5], over the alphabet Y = {yi}r>1 (resp. X = {x0,21}) generating the free

monoid (Y*, 1y+) (resp. (X*, 1x+)) with respect to the concatenation (denoted by conc and omitted
when there is no ambiguity), the set of Lyndon words LynY (resp. LynX) and the set of polynomials,
Q(Y") (resp. Q(X)). This theorem exploits the indexations of polylogarithms and harmonic sums in (1)
by words, i.e. [9, 10]

Ligr(z) = log"(2)/r!, Lixglflxl...xé’"_l = Lig s Hy iy, = Hsy s, (4)

x
It follows that the isomorphism of algebras He : (Q(Y), w) — (Q{Hy }wey=, X) (resp. Li, :
(Q(X),) — (Q{Liy twex=, X)), mapping u (resp. v) to H, (resp. Li,), induce the following
surjective polymorphism [9, 10]

(Qlx+ @ 2oQ(X)x1, 1, 1x+)

@iy o O\ QY w1y B X
s1—1 Sk_l
TOTL B0 e), ©)
Ysy ++ - Ysy,

where Z is the (Q-algebra generated by polyzetas (not linearly free [13]) and the product = (resp. L)
is defined, for any u, v, w € Y* (resp. X*) and y;,y; € Y (resp. x,y € X), by

ww lys = ly« ww = w and y;u w y;v = y;(u w y;v) + y;(yiv = v) + yip(uwv), (7)

(resp. ww 1x» = 1x» ww = wand zu w yv = z(uw yv) + y(zuwv)). (8)

The graphs of the ¢ polymorphism in (5)-(6) are expressed as w (resp. ww)-group like series as
follows [9, 10]

e N\
Zy=¢e H SV ahg Z, = H €<(SZ)PI7 (9)
leLynY \{y1} leLynX\X

where {IL, } ey (resp. { Py }wex+) is the PBW-Lyndon basis (of the Lie polynomilas {II; };c zyyny (resp.
{P}1e£ynx) basis) in duality with {2, } e x+ (resp. {Sw }wex+) (containing the basis {3 }1c £yny (resp.
{Si}iecyny)), on the w (resp. w)-bialgebra [9, 10]. Finally, the identification of their local coordinates
(of second kind in the group of group like series) in the equations bridging the lagebraic structures of
polyzetas, i.e. [5]

ny — e’Yyl—Zsz C(k’)(_yl)k/kﬂ-yzu_l and ZU_, = e"ﬂﬁ‘Zng C(k)(_xl)k/kﬂ-XZ% (10)

provides the algebraic relations among {((3) }1e£yny\ {1} (tesp. {¢(S1) }ieynx\ x), independent on
7, leading to the algebraic bases for Im ¢ and the homogenous polynomials generating ker ¢ [9, 10] (see
[3] for examples), with? the morphism of monoids 7y : X*z1 — Y* (resp. mx : Y* — X*z1) maps
yi, to xlg_lxl (resp. xlg_lxl to yr).

2 . . -1 sr—1
“There are one-to-one correspondences over the above monoids and that generated by N>1, i.e m(s)l ... :cg’" r1 €

X'T1 =78 Ysy - Ys,. €Y > (81,...,5r) e Ny,

29

2. Rewriting among {El}legyny\{yl} and among {Sl}zeﬁynX\X

For convenience, X’ denotes X or Y and if X = X then gDIV = X and CONV = zo X"z else
gDIV = {y;} and CONV = (Y \ {y1})Y™*. It follows that LynX \ gDIV C CONV.

Expressing, i.e replacing “=" by “—7, the relations among polyzetas in [3] become the rewriting rules
among polyzetas and yield the following increasing sets of irreducible polyzetas (see Example 1 below)

ZER2 . cZNSP . czh (11)

wrr irr irr

and their images by a section of ((see Example 2 below)

LES2 o cphSP oot (12)

irr irr irr

such that the following restriction is an isomorphism of algebras [9, 10]

¢ QILE(X)] — Q[2;,7] = 2. (13)
Note that one also has
X, &< X, x,<
ci'rroo = U ’Cirr P and ﬁir'roo = U ﬁirr p‘ (14)
p=>2 p=>2

Now, let us describe the algorithm LocalCoordinateldentification below which brings aditional
results to [3]. It provides the rewriting systems (Qly: @ 2oQ(X)z1,RY,) and (Qly+ @ (Y \
{y1})Q(Y), RY) which are without critical pairs, noetherian, confluent and precisely contains the
above sets (see (11)—(12)) and, on the other hand, the set of homogenous in weight polynomials, be-
longing to Q[LynX \ gDIV], which are image by a section of the surjective ¢ polymorphism from

{¢(Q1) = O}ieLynx\gprv- It is denoted by Qx:

Qx = {Qi}ieLynx\gpIv (15)

and generates the shuffle or quasi-shuffle ideal R x inside ker ¢ as follows
R :=spangQux C ker (. (16)

Forany p > 2and ! € Lyn?X := {l € LynX|(l) = p}, any nonzero homogenous in weight
polynomial (belonging to Q) Q; = ¥; — YT (resp. Q; = S; — U)) is led by ¥ (resp. S;) being
transcendent over Q[ﬁi)ﬁ’rgp Jand Y = Q; — X (resp. Uy = Q; — S)) is canonically represented in
@[E;\;;Sp |. Then let ¥; — Y; and S; — U, be the rewriting rules, respectively, of

er ={ - Tl}leﬁyny\{yl} and Ré{?« ={S — Ul}le[lynX\X~ (17)
On the other hand, the following assertions are equivalent (see Example 2 below)

1. Q=0
2.3, € [,ZYT’TSP (resp. S; € E-X’Sp),

wrr

3. ¥; — X (resp. 5] — Sl)

In the other words, the ordering over LynX induces the ordering over £ R, R¥X and, in the

wrr 0 wrr

systems (Qlx+ ® 2oQ(X)z1, Ry,) and (Qly~ & (Y \ {y1})Q(Y), RY),

1. each irreducible term, in Cffnfo, is an element of the algebraic basis {2 };c £yny\ {y,} of (Qly~ @

Y\ Ay HQY), w) (resp. {1 hiecynx\x of (Qlx+ & 2oQ(X)z1, 1)),
X

wrr?

l:;Y,OO

2. each rewriting rule, in R | and the right

side being canonically represented in Q[C;{’Tw]. The difference of these two sides belongs to the

ordered ideal Ry of Q[LynX \ gDIV].

admits the left side being transcendent over Q[

30

LocalCoordlnateIdentiﬁcation
Zipy = {} Ezrr = {} Rzr’r = {}7 Qu = {}’
for p ranges in 2,...,00 do
for | ranges in the totally ordered Lyn’X do
identify (Z,|I}) in Z, = B(y1)7yZ,, and (Z|P) in Z, = B(x1) 'nxZy;
by elimination, obtain equations on {C(Zl/)}l’egynpy and on {C(Sl’)}l/g[:ynpx ;

express® the equatlons led by ((3;) and by C(Sl) as rewriting rules,

if (%)) = (%) then Z)°:= ZV™® U{¢(E)} and L1 = L0®U{%}
else R;{r = RZT @] {Zl — Tl} and Qy = Qy U {El Tl}
if ¢(S;) — ¢(S;) then Z”,T = ZU{¢(S)} and [,W =L U{S}
else Ry =RX U{S — U} and Qx := Qx U{S, —
end_for
end_for

With the notations introduced in (11)-(17), on also has*

Proposition 1 ([9, 10]). 1. Ry = kerC and (@[¥l =Z =Im(.
2. QU{St}iecynx\x] = Rx @ QL) and Q{1 }ie yny\ ()] = Ry @ Q[L]27).

Proor -

1. Let @ € ker (, (Q|1x+) = 0. Then Q@ = Q1 + Q2 (with Q2 € Q[oo]and Q1 € Ry). Hence,
decomposing in {S;}icrynx\x (tesp. {Xi}iesyny\{y:}) and reducing by R, it follows that
Q =R ()1 € Rx and then the expected result.
Let w € CONV. Decomposing in {5 };cynx\ x (resp. {El}leﬁyny\{yl}) and reducing by R ,
w € Q[L>]. Applying (13) and (5)-(6), ¢(w) € Q[Z,*™°] = Z and Z = Im (. Extending by

linearrity, it follows the expected result.
2. For any w € CONV decomposing in {5 }iccynx\x (tesp. {2 }iccyny\{y,}) and reducing by

RE,. C(w) € Q2] By 1ineafity, it P € Q[{Sihecynx\x] (resp. QU{Zi}ieLyny\{y:}]) and
P ¢ ker(O Ry then ((P) € Q[)]

On the other hand, if Q € Ry N Q[EWOO] then, by (16), ((Q) = 0 and then, by (13), @ = 0
yielding the expected result.

O

Theorem 1 ([9, 10]). The Q-algebra Z is freely generated by Z;}jroo and Z = Q1 & Pj.>5 Zk.

Proor - By (13) and Proposition 1, Z is freely generated by Z;f;oo and ker ¢, being generated by the
homogenous in weight polynomials {Q; }ic £ynx\gD1v, is graded. With the notations in Conjecture 1,
being isomorphic to Qly« & (Y \ {y1})Q(Y")/ ker ¢ and to Q1 x+ & 2oQ(X)x1/ ker ¢, Z is also graded.
O

Corollary 1([9, 10]). Let P € EW Then ((P) is a transcendent number.

Proor - Let P € Q(X) and P ¢ ker(, being homogenous in weight, or P € CONV. Since
212w C Zgyp (k, k' > 1) then each monomial (¢(P))* (k > 1) is of different weight and then, by
Theorem 1, ((P) could not satisfy, over Q, an algebralc equation T% 4 ap,_1T*~! 4 ... = 0 meaning
that ((P) is a transcendent number. Since any P € EZM is homogenous in weight then it follows the
expected result. [

*This step and the following ones are not yet been achieved by the implementation in [3].
*See also [11] for further information.

31

Example 1 (irreducible polyzetas, [3]).

ZS = {C(S0en) C0Si20,) €St)s (S8)s C(Supaanet) C (St)
C(Smom%mox?% C(Sx(l)oml)a C(Sxoz?momz)a <(Smom%x0:p£f)a C(Swox‘llxom?)}'
Z'Y’SH = {C(Ew)a C(Eys)a C(Eys)a C(Z?ﬁ)) C(Ey3y§)7 C(Ey9)7 C(ZygyZ)a

wrr

C(2y11)7 C(Eygy?)v C(Zygy?% Q(Eygyig)}

Example 2 (Rewriting on {X;}c £yny\ {1} a0d {Si}iecynx\ x> irreducible terms).

Rewriting on {Xi}icryny\{y1} Rewriting on {Si}rynx\x
3 Z3J2y1 — %ZyS Smom% - S:rgxl
Sy — D2 Syan, — 2Sim
4 Eyi‘ayl - %Z;;Q S:cgz% — 1710qu3121
Eyny - %252 Sévoﬁ - %Sl;alle
Yysye — Syg By, — 5By ngazf - _Sac%aclsxowl + 2Sa:§m1
2y4y1 - _2y32y2 + %Z% S$g:c1xom1 — _%ng:cl + S:v%x1 S$0$1
5 Eygyl - %Ey32y2 - %2% Sac%x% — _S:B(Q)xlslmivl + 25.7}%431
ysy2 %Eys Szozlmo:c% — %Sfcém
Eygyi’ - %2%292 + gzys Szom‘ll — Smgzl
S = ST Suse, = Sk
Syye — D2 Ay Swzz — 355t0m — 3Su3,,
ZySyl - %nyg - %Eytgﬂz ngzlzoml — %055;;1'31
Yysyry: _%nyg + %Eyt?Z ngmﬁ - %S;I;li - S:ggi
E1131/23/1 — 32?;;2 — %2;253 Sz%xm:g:c% — %S\;;x?’l
6 Ey4y% - %ny3 B %EyquQ 576390%300501 - _%S;;xgl + %qugai
S 7 w1 Suzet = 1= Shom — % %fl
Eyw:f’ - %Zyt;g 52?01711093? - %S;gfl - S:gxl
Spyt = TR A7 | Sur = 55mm
Ei)f;ﬂgu - {5170117 Smgscp 521731‘17 Sm8m17 Smom%zgz‘llﬂ S:cgmp
Saor2agats Setozy Seoadzorls Sworieea® Szorizgt)
L;i,;l? = {Eyz’ Dy, Ly > Dy Eygy?? Yo, Eygyz’ Yy Eygy?a Ey;gy?v Eygyﬁ}'

3. Conclusion

Thanks to a Abel like theorem and the equation bridging the algebraic structures of the Q-algebra Z
generated by the polyzetas [5], the algorithm LocalCoordinateIldentification provides the algebraic
relations® among the local coordinates, of second kind on the groups of group-like series, of the
noncommutative series Z,,, (i.e. {((S1) }iesynx\x) and Zw (i.e. {C(31) bieryny\{y:})- These relations

constitute two confluent rewriting systems in which the irreducible terms, belonging to Z X0 represent
the algebraic generators for Z and, on the other hand, the wu-ideal R x and the w -ideal Ry represent
the kernels of the polymorphism (Proposition 1). These ideals are generated by the polynomials, totally
ordered and homogenous in weight, {Q; };c zynx\gprv and are interpreted as the confluent rewriting

systems in which the irreducible terms belong to Efi;oo and, in each rewriting rule of R\, the left side

*These are different from those among {¢(!) }1e £ynx\eprv obtained by “double shuffle relations” [8], for which Conjecture 1

holds, up to weight 10.

32

mrr

rr?

is the leading monomial of Q;,! € LynX \ gDIV and is transcendent over Q[E?;fo] while the right

side is canonically represented on Q[ﬁg;oo]. It follows that ¢ (Q[ﬁfi;oo]), i.e. Z, as being isomorphic to
Qlx+ ® 2oQ(X)z1/Rx and to Qly~ & (Y \ {v1})Q(Y) /Ry, is Q-free and graded (Theorem 1) and
then irreducible polyzetas, being Q-algebraic independent, are transcendent numbers (Corollary 1). By
these results, up to weight 12, Conjecture 1 holds (see also® [7, 12]), i.e. ZYs12 4 QQ-algebraically free

irr
(Example 2).

References

[1] J. Blimlein, D. J. Broadhurst, and J. A. M. Vermaseren.— The multiple zeta value data mine, Computer
Physics Communications, 181(3), pp. 582-625, 2010.

[2] D. Borwein, J.M. Borwein & R. Girgensohn.— Explicit evaluation of Euler sums. Proc. Edin. Math.
Soc., 38 (1995), pp. 277-294.

[3] V.C.Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh.— Structure of Polyzetas and Explicit Representation
on Transcendence Bases of Shuffle and Stuffle Algebras, J. Sym. Comp. 83 (2017).

[4] V.C. Bui, V. Hoang Ngoc Minh, Q.H. Ngo and V. Nguyen Dinh.— On The Kernels Of The Zeta
Polymorphism, to appear in the proceeding of “XV International Workshop Lie Theory and Its
Applications in Physics".

[5] C. Costermans, V. Hoang Ngoc Minh.— Noncommutative algebra, multiple harmonic sums and
applications in discrete probability, J. Sym. Comp. (2009), 801-817.

(6] L.Euler.— Meditationes circa singulare serierum genus, Novi. Comm. Acad. Sci. Petropolitanae, 20
(1775), 140-186.

[7] M. Espie, J.-C. Novelli, G. Racinet.— Formal Computations About Multiple Zeta Values, IRMA Lect.
Math. Theor. Phys. 3, de Gruyter, Berlin, 2003, pp. 1-16.

[8] V. Hoang Ngoc Minh, M. Petitot.— A Lyndon words, polylogarithms and the Riemann (function,
Proceedings of FPSAC’98, 1998.

[9] V. Hoang Ngoc Minh.- Structure of polyzetas and Lyndon words, Vietnamese Math. J. (2013), 41,
Issue 4, 409-450.

[10] V. Hoang Ngoc Minh.— On the solutions of universal differential equation with three singularities, in
Confluentes Mathematici, Tome 11 (2019) no. 2, p. 25-64.

[11] V. Hoang Ngoc Minh.— On the Algebraic Bases of Polyzetas, in submission.

[12] M. Kaneko, M. Noro, and K. Tsurumaki.— On a conjecture for the dimension of the space of the
multiple zeta values, IMA Volumes in Mathematics and its Applications 148, Springer, New York,
2008, pp. 47-58.

[13] D. Zagier.— Values of zeta functions and their applications, in “First European Congress of Mathe-
matics", vol. 2, Birkhéuser, pp. 497-512, (1994).

SAll these implementations base on the “double shuffle relations" and provide linear relations.

33

An e-origami artwork of a big wing crane

Tetsuo Idaf

University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8573, Japan

Abstract

We present the construction of a big wing crane as an application of folding with virtual cutting and gluing edges
of origami faces in the e-origami environment. With the new methodology, we can reason about the construction
algorithm for classical origami in finer steps rather than relying on the skill of the human hand. We employ a
new origami model, as described in our earlier work, and we have developed software that implements classical
origami folds.

Keywords
e-origami, classical fold, paper folding rule, cut and glue edges

1. Introduction

In our previous paper [1], we introduced a new technique of cut-and-glue of a shared face edge to
e-origami'. We observed that an origami artwork is a complex arrangement of bounded two-sided flat
planes, or faces, intricately connected and superposed by repeated folds of a single (virtual) sheet of
paper. This collection of faces culminates in an object with a remarkable shape.

Our research demonstrates that cutting an edge shared by two faces unveils a class of classical
folds. By gluing the faces divided by the cut, we restore the connection of the separated faces. This
cut-and-glue technique opens up vast possibilities, enabling the discovery of new folds that were
previously deemed impossible by Huzita-Justin folds, which, when applied to practical constructions,
have certain limitations that our approach overcomes [2] and [3]. The inside reverse fold, one of the
most straightforward classical folds, is not included in the Huzita-Justin folds. When we apply the
cut-and-glue technique, we can realize the inside reverse fold by combining Huzita-Justin folds. We
demonstrate the practical application of our method by constructing a big wing crane, a well-versed
sophisticated origami structure [4] that demands a deep research investigation.

2. Modeling for e-origami

Origami is a term meaning “folding paper.” It also refers to a sheet of paper used for origami. Folding
an origami along a fold line and unfolding the fold to the previous shape leaves a line segment, called
a crease, on the origami. We can construct various interesting geometric objects when we freely
choose fold lines and allow overlaps of faces without breaking the original sheet. When we impose
mathematically plausible fold line construction rules, we can define an origami geometry that deserves
deep mathematical investigation.

Euclidean (plane) geometry constructs geometrical objects using only a straightedge and a compass.
Similarly, origami geometry, a tool-less approach, defines its rules. Huzita-Justin’s rules are the com-
monly agreed rule set on which origami geometry is based. In Table 1, we list some (4 out of 7) of the
Huzita-Justin rules implemented in the Eos system [5] that we use to construct a big wing crane. These
rules, together with newly implemented classical folds (see next section) and software tools of Eos,
allow us to manipulate origami flexibly.

SCSS 2024: The 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024, Tokyo, Japan
R ida@cs.tsukuba.ac.jp (T. Ida)

& https://www.i-eos.org/ida (T. Ida)

® 0000-0002-5683-216X (T. Ida)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

We use the term e-origami to refer to origami innovated by information technology.

34

mailto:ida@cs.tsukuba.ac.jp
https://www.i-eos.org/ida
https://orcid.org/0000-0002-5683-216X
https://creativecommons.org/licenses/by/4.0/deed.en

Table 1
Huzita-Justin rules

Rule Command Operation
(01) HO[PQ] Fold along line PQ)
(02 P, G] Fold to superpose point P and point @

) HO[
(03) HO[PQ,RS] Fold to superpose line PQ and line RS
(04) HO[PQ, X] Fold along the line perpendicular to line P() that passes through point X

3. Modeling for e-origami

We give a mathematical notation for the definition of origami and reason about its properties. In origami,
we have faces and two kinds of neighborhood relations between the faces, i.e., superposition and
adjacency. The superposition is a vertical neighborhood relation, and the adjacency is a horizontal one.
A face is a polygon having an attribute of sides. When we denote polygon P; ... P,, where we arrange
points P; ... P, counterclockwise, we call the plane front side, and the polygon P, ... P; is identified
the same as with polygon P; ... P,, with the attribute of the back side. For any faces, f = P; ... P, and
g=Q1...Qy, fisequalto giff g is a cyclic permutation of f or a cyclic permutation of a reverse of f.

We let I1 be a finite set of faces, «~ be a binary relation on II, called adjacency relation, and > be a
binary relation on II, called superposition relation. An abstract origami is a structure (II, «~, >). We
abbreviate abstract origami to AO. We denote the set of AOs by O. An abstract origami system is an
abstract rewriting system (O, %) [6] , where % is a rewrite relation on O, called abstract fold.

For O,0'(€ 0O), we write O & O when O is abstractly folded to O'. We begin an origami
construction with an initial AO and perform an abstract fold repeatedly until we obtain the desired AO.
Usually, we start an origami construction with a square sheet of paper. This initial sheet of paper is
abstracted as a structure having a single distinguished face denoted by the numeral 1. Then, the initial
AO O is represented by ({1},), (). Furthermore, when we fold face n, the face is divided into two
faces 2n and 2n + 1. We use this convention in this paper and the realization of the data structure of
the e-origami system Eos [7] and the origami language Orikoto of Eos. Suppose that we are at the
beginning of step 7 of the construction, having AO O;_; = (II;_1,«;_1, =i—1). We perform an abstract
fold and obtain a next AO O; = (II;, «;, ;). Thus, we have the following %--sequence.

01%+03% ---% O,

An abstract origami construction is a finite 3>-sequence of AOs. In concrete terms, the operation 3 can
be a fold by one of Huzita-Justin’s rules, a mountain fold, a valley fold, etc., each requiring arguments
of different kinds. We abuse O; to be a name of the origami constructed at step .

We now move on to concrete origami. Origami is a term meaning “folding paper.” It also refers
to a sheet of paper used for origami. Folding an origami along a fold line and unfolding the fold to
the previous shape leaves a line segment, called a crease, on the origami. We can construct various
interesting geometric objects when we freely choose fold lines and allow overlaps of faces without
breaking the original sheet. When we impose mathematically plausible rules for choosing fold lines, we
can define an origami geometry that deserves deep mathematical investigation.

Euclidean (plane) geometry constructs geometrical objects using only a straightedge and a com-
pass. Similarly, origami geometry, a tool-less approach, defines its rules. Huzita-Justin’s rules are the
commonly agreed rule set on which origami geometry is based. In Table 1, we list some (4 out of 7)
Huzita-Justin rules that we use to construct a big wing crane. These rules, newly implemented classical
folds (to be discussed in the next section), and our software tools allow us to manipulate origami flexibly.

35

4. Classical Folds

4.1. Mountain fold and Valley fold

Understanding the fundamental fold operations of the mountain and valley fold is crucial in origami.
These folds are named after the resemblance of the crease to a mountain ridge and a valley lap. The
crease is formed by the unfold operation that follows the mountain (or valley) fold. The result of the
valley fold is shown in Fig.1(b). The origami is now two-layered, but the back layer is not visible since
the upper triangle face completely overlaps the lower triangle face. Next, we unfold the origami shown
in Fig. 1(c). Unfold does not mean "undoing," although we recover the shape of the origami to the one
in Fig.1(a) except for the dotted line segment CA. We call the line segment valley crease. If we have a
rich imagination, the crease looks like a lap in the valley.

(a) before valley fold (b) after valley fold (c) after unfold
Figure 1: Valley fold

Similarly, we have a mountain fold below.

(a) before mountain fold (b) after mountain fold (c) after unfold

Figure 2: Mountain fold

The mountain and valley folds are similar to the Huzita-Justin rule (O1), with the important difference
that rule (O1) operates on all the stacked faces. In contrast, the mountain and valley folds apply to
automatically selected faces.

The terms “valley” and “mountain” are sometimes misleading to beginner origami hobbyists since
those folds are not necessarily immediately followed by an unfold. Hence, valley and mountain creases
may not appear unless the origami is entirely unfolded. More geometrically clear terminology is desired
for origami geometers.

4.2. FO

The above observation led us to define command FO. FO, standing for Fold Origami, is a command
FO[8][faces, ray] for rotating target faces along ray by angle 6. It is a generalization of the mountain
and valley folds. The implementation of FO contains an algorithm to select the target faces to be rotated
based on faces.

Note that FO is defined as a Curried function. Using FO, we could define ValleyFold and MountainFold
as follows:

ValleyFold = FO[-7]; MountainFold = FO[7];

With € other than 47, FO constructs a 3D origami in general. Usually, we use FO[f] towards the ending
steps of the construction.

36

4.3. Inside reverse and outside reverse folds

The inside reverse and outside reverse folds are often used in paper folding. Both work on a pair of
superposed faces that share an edge. When the cut-and-glue technique is introduced, both folds are
realized by combinations of the valley and mountain folds. However, each uses the valley and mountain
folds on opposite faces.

4.3.1. Inside reverse fold

Below we show a simple example of an inside reverse fold. Let
01 %" 049" 06 % O7 %+ Oy

be a construction sequence of the example. Each origami O;, 7 € {1,4, 6,7, 8} is visualized in Fig. 3.

(b) O4 (©) Os

(d) O7 (e) Os (f) Og with wider gap
Figure 3: Inside reverse fold

Origami Oy is consructed from O; by a sequence of commands; VallyFold, ValleyFold, and Unfold. It
is a double-layered stack of faces. On the top layer are two faces, i.e., face CFE and face AEFD. On the
second one, i.e., the bottom layer, are two faces of the same shapes as the ones above but in opposite
orientations. Each face is identified by a unique face ID, automatically assigned by the system. In this
elementary example, we do not have to be concerned with face IDs since it is unnecessary to specify to
which faces we apply the inside reverse fold. To the example O, of Fig. 3(b) we apply the following
command:

InsideReverseFold["CE", "FE"]

The first argument, CE, specifies the edge to be cut. It is specified as the type ray. The second argument,
FE, is the ray along which mountain and valley folds are performed. The above inside reverse fold
command performs the following operations:

1. Check if the inside reverse fold is feasible. Namely, check if ZCFE < 7/2.

2. Cut the edge CE. As a result, point C is split into C and C;(not shown). The result is Os. Origami
Os is not shown in Fig. 3.

3. Valley fold along ray FE. The face C1EG is moved. We impose a rule that faces to the right of a fold
line (interpreted as a ray) are moved by a fold. The result is Og,

4. Mountain fold along ray FE. The face CFE is moved. The result is O7.

5. Glue the moved edges CE and C;E to form a new edge CE. The result is Os.

37

Note in passing that performing Steps 2 and 3 above in sequence would only be possible when we
cut and separated the shared edge EC. As we construct origami in a virtual space, we can cut CE and
glue the moved CEs without complication. After following the above steps, the obtained origami is
shown in Fig. 3(e) and (f); the latter illustrating the ins and outs of the origami object. Our specially
designed viewer generates this graphics image, providing a comprehensive view of the origami.

On the other hand, in the case of the outside reverse fold, we make a polygonal cover on the faces.

4.3.2. Outside reverse fold

An outside reverse fold is similar to an inside reverse fold. The difference is that the outside reverse
fold applies mountain and valley folds to different faces in opposite layers. We refer to the construction
sequence

01% 0% -+ Og,

where O;,7 = 1,..., 8 are visualized in Fig. 4(a)~(e). We apply the following command:

OutsideReverseFold["CE","FE"] (1)

to Oy, and obtain Og. Note that constraint 7/2 < ZCEF < 7 should be satisfied; otherwise the
execution of (1) fails. The origami construction sequence in Fig. 4 is now self-explanatory. Figure 4 (f)
shows the origami structure of Og more clearly.

(b) O4 (c) Oe
(e) Os (f) Og with wider gap

Figure 4: Outside reverse fold

4.3.3. Other classical folds

In addition to the classical folds we have discussed so far, we analyzed the folding algoriths of the
following classical folds well-known in the origami community and implemented them: SquashFold,
RabbitEarFold, SwivelFold, InsideCrimpPleatFold, and OutsideCrimpPleatFold, using the cut-and-glue
technique. They are given in the Appendix.

5. Construction of a big wing crane

5.1. Overview

A crane origami is an exciting example. It is one of the best-known artworks, requiring the classical
folds we discussed. Making a delicate crane by hand is challenging for beginner origami hobbyists. In

38

the context of e-origami, this example poses another challenge in modeling a new class of folds. We
will present the construction of a big wing crane origami. However, instead of describing in natural
language with guiding icons and annotation, we present an algorithm for constructing a crane origami.
This algorithm provides a step-by-step prescription for folding the crane in a programming language.
We present a big wing crane, a well-known flying crane origami variation [4]. Algorithmically, it is
simpler than the ordinary, well-known ones.

We start with a rhombus-shaped piece of paper. We have included entire program codes in a separate
webpage (www.i-eos.org/orikoto-program-of-a-big-wing-crane) to help the reader better understand
the internal origami structure. These codes are not just for show-they allow us to visualize the intricate
folds and their arrangement, making the construction process more accessible. In this construction,
we specify the origami faces of textured patterns on the completed work, adding an artistic dimension
to the origami. This approach, requiring a special texture mapping algorithm, opens up new creative
possibilities in origami modeling. To complete the artwork shown below, we need 71 steps. In one step,
an origami object will make one structural change. For example, we count one structural change of
the origami object in one application of a valley fold, a mountain fold, and one of the Huzita-Justin
folds. One inside reverse fold requires four substeps, i.e., cut, valley fold, mountain fold, and glue. The
number of steps for the entire construction is surprisingly large at first sight, but we should observe
that the origami objects have several symmetries. Therefore, a similar code sequence is repeated more
than once. The number of crucial operations is limited. While the space is limited in this paper, we
assure the readers that they grasp the essence of the construction by showing carefully selected crucial
steps and output graphics of the origami construction process.

The construction consists of the following four stages.

(1) bird base construction,
(2) leg construction,

(3) bill construction,

(4) wing construction.

We will briefly explore the steps in each stage.

5.2. Bird base construction

LLet 7 be a construction O * Oy, where k > 1 and Oy, has a certain distinguidh feature A, we call
7 an A-base construction. We want to construct a bird-like origami Oj. In this stage, we will construct
a bird base, i.e., A is a bird and k = 49. We also call O, a bird base.

Let 7 be a construction 01 &* Oy, where k > 1 and Oy, has a certain distinguidh feature A, we call
7 an A-base construction. We want to construct a bird-like origami O. In this stage, we will construct
a bird base, i.e., A is a bird and k = 49. We also call Oy, a bird base.

The first 11 steps in 7 produce Oy, ..., 011 shown in Fig. 5. We start with an initial origami of a
rhombus shape to make the crane’s wings bigger than the crane made from the square initial origami.
Applying rule (02) to O; and O, we obtain Os. Oz is quad layered. We apply rule (O3) to fold O3
along the bisector of ZBCE, and then unfold Oy to obtain O5. Steps 4 and 5 aim to construct a valley
crease F4E that will be used in the inside reverse fold on Os. Os has three other creases, F3E, F2E, and
F1E, at the intersection of the bisector and the hypotenuses of the right triangular faces on four layers.

The subsequence of the construction O5 &* Og 3 01 shows the first application of the inside
reverse fold on Os:

InsideReverseFold}["BE", "F4E"].

The application of InsideReverseFold requires four substeps, i.e., cut, valley fold, mountain fold, and
glue, and returns Og. The top view of O5 and Oy appears the same, but two triangular faces BF3E and
BF4E have been moved below face CEF4 in Og by the application. When we move face CEF4 at step 10,
we observe the difference. By turning over O1g, we have origami (11 seen from the backside?.

*We have a command TurnOver[ray], which is a variation of FO[r][ray].

39

44«

(@) O1 (b) O2 ©Os (d) O4
() Os (® O1o (h) O

Figure 5: Subsequence 1 of the bitd base

Similarly, we apply another inside reverse fold to the right half of O11, and by following the con-
struction sequence 017 % O15 ¢+ O16 & Os7.

©®®

(a) O15: by insert reverse (b) O16: by (O1) (c) O17: by turn over
fold

Figure 6: Subsequence 2 of the bird base

The rest of the subsequence in the bird base is given in Figs. 7 and 8 with annotation in the title of
each sub-figure. Each sequence of figures are the visualization of

40

" O3 ¢ O29 + O3,

and

q-* O3 & 042 & Oy3 Qs * O & Ous & Oyg.

(a) O23: by insert reverse(b) O29: by insert reverse (c) O30: by turn over
fold fold

Figure 7: Subsequence 3 of the bird base

At the end of the bird base construction, we obtain O4g and O49. The latter is the bird base. The bird
base is crucial in origami crane construction, whether for the big wing crane or for a commonly known
classical crane. This slim diamond-shaped origami piece has a crack in the middle of the upper half
shown in Oyg in Fig. 8(f). This piece is quad-layered, and each double layer is vertically symmetric as
well as horizontallly symmetric with respect fo the axis AB.

5.3. Leg construction

The leg construction subsequence is the following:
q-* Os3 q-* 0;7 q-* Og1
We apply the inside reverse fold to the right and left parts of the bird base O,9. Note that the inside
reverse fold can be applied to multiple layers of faces.
5.4. Bill construction

The bill construction subsequence is the following:
" Op1 " Oz " Opr + Ogs

Here, we make crease Z1Z2, where we choose by the designer’s preference arbitraly positions of points
Z1 and Z2 on the edges. The crease determines the twist of the bill. We apply the inside reverse fold on
Og2. Then, we rotate Ogg along R1L1 by 7 and obtain Ogs.

5.5. Wing construction

Finally, we apply the command FO twice to make the origami three-dimensional. We apply FO[-(3/8) 7]
to those faces that constitute the wings. We complete the construction to bring the bill partly to the
right, as this is our preferred posture. Our viewer can manipulate the origami object. The viewer and

41

(a) Os6: by insert reverse (b) O42: by insert reverse (c) O43: by turn over
fold fold

/ ' \ /'//
/'/ R \\\ //
/ LY) 7
/,/ \\} </
\ / \
\ /" \\
\ 9 // ’ :\\\
\ / N\
\ Y, \
\ /
N/
\\///
(d) Oge: bring inner face to (e) O4s: bring inner face to () Oa49: by turn over
outside outside

Figure 8: Subsequence 4 of the bird base

Mathematica’s graphics functions [8], for example, remove the point names and change the size of the
image and lighting.
+* Ogg + O79 + O7y

5.6. Texture mapping and adjustment of posture

The following are the results of our artwork. Figure 11(a) is the polished version of O7;. We removed
the point names, enlarged the image, and readjusted the posture of the crane. Figures 11(b) and (c)
are obtained by adding textures to the image of O71, using the functionality of texture mapping of
Mathematica.

6. Concluding remarks

We have shown that the cut-and-glue technique simplifies modeling the classical folds and, hence,
the implementation in the e-origami environment. Using a cut operation, we have shown that the
seemingly complex inside (and outside) reverse fold is reduced to a sequence of FO folds. We illustrated
other popular classical folds, such as a rabbit ear fold, are realized similarly.

We constructed a big wing crane origami as a nontrivial application of the newly defined inside
reverse fold. The design is coordinate-free yet allows for the freedom of choice of wing angles and

42

(@) Oss: creae X1F3 (b) Os7: by insert reverse (c) Os1: right leg construc-
fold tion

Figure 9: Leg construction

two positions of bending points of a bill. The construction proceeds as step-by-step fold operations
described in the Orikoto origami programming language. Thus, creating a big wing crane is purely an
algorithmic process. Furthermore, the added feature of texture mapping of our system, Eos, makes the
final product more original artwork.

The algorithm’s implementation in the earlier paper [1] was extensively tested and extended for more
capabilities. The newer Eos version and the construction program are published at the website [9].

References

[1] T.Ida, H. Takahashi, A new modeling of classical folds in computational origami, in: P. Jani¢ic,
Z.Kovécs (Eds.), Proceedings of the 13 th International Conference on Automated Deduction in
Geometry, volume 352 of EPTCS, Elsevier Inc., 2021, pp. 41-53.

[2] H. Huzita (Ed.), Proceedings of the First International Meeting of Origami Science and Technology,
Ferrara, Italy, 1989.

[3] J.Justin, Résolution par le pliage de I’équation du 3e degré et applications géométriques, L’Ouvert
(1986) 9 — 19.

[4] K. Fushimi, M. Fushimi, Geometry of Origami, Nippon Hyoron sha Co. Ltd., 1979. (in Japanese).

[5] T.Ida, Anintroduction to Computational Origami, Texts and Monographs in Symbolic Computation,
Springer International Publishing Switzerland, 2020.

43

SO

(a) Os9: by FO (b) O7o: by turn over (c) O71: by FO

Figure 10: Opening wings

(a) final (b) textured crane (c) another textured crane

Figure 11: Monotone and textured cranes

[6] M. Bezem, J. W. Klop, Abstract reduction systems, volume Term Rewriting Systems, Cambridge
University Press, 2003, pp. 7 - 23.

[7] T. Ida, D. Tepeneu, B. Buchberger, J. Robu, Proving and Constraint Solving in Computational
Origami, in: Proceedings of the 7th International Symposium on Artificial Intelligence and Symbolic
Computation (AISC 2004), volume 3249 of Lecture Notes in Artificial Intelligence, 2004, pp. 132-142.

[8] Wolfram Research, Inc., Mathematica, 2023.

[9] Eos project, 2024. URL: https://www.i-eos.org.

A. Classical folds realizable by cut-and-glue technique

« Squash fold

SquashFold = InserReverseFold; (O1)
+ Inside crimp pleat fold
+ Outside crimp pleat fold

44

https://www.i-eos.org

A «

(a) before (b) after
i q_>*
(a) before (b) after

« Rabbit ear fold

(a) before (b) after
« Swivel fold
\ g * \
(a) before (b) after

45

The geometry of N-body orbits and the DFT
—Extended Abstract for work in progress —

Patrick D. F. Ion®%*1

!International Mathematical Knowledge Trust, Mathematical Reviews ret’d
?University of Michigan, Ann Arbor, MI, USA

Keywords
Discrete Fourier Transform, N-body orbits,

1. Extended Abstract

The context is the Newtonian equal-mass three-body problem [Newton1687]. It’s been a couple of
decades since the discovery by Cris Moore [Moore1993] of a new periodic choreographic orbit, the
first since Euler [Euler1767] and Lagrange [Lagrange1772]. Choreographic means that the all the
particles follow the same orbital path. This figure-eight orbit was a numerical solution done on a
Mac SE when looking for braids in orbits. The proof of its mechanical existence by Richard Mont-
gomery [Montgomery1998] and Alain Chenciner [ChencinerMontgomery2000]was seen as important
[see also [Chen2001] and [Nauenberg2007]] . Poincaré [Poincare1890] had discussed the necessarily
complex, even chaotic, nature of 3-body orbits [Poincare1890] . This led to additional hundreds of
new periodic choreographic orbits found numerically by Carles Sim6 [Simo02002] and later others
[SuvakovDmitrasinovic2013]. The required proofs that these were also more than numerical objects
still remain to be provided, with a few exceptions.

At about the same time, there was a renewal of interest in the use of the discrete Fourier transform
(DFT) in Euclidean geometry. This subject goes back to Jesse Douglas [Douglas1940a] and Isaac
Schoenberg [Schoenberg1950]. The second simplest consideration of this type is based on the harmonic
analysis of the cyclic group of order 3 (second because order 2 is even simpler than 3). The basic
assertion is then the classical construction of Napoleon’s Theorem. Any triangle, seen as a triple of
points in the complex plane, may be written as a complex linear combination of the totally degenerate
triangle consisting of three coincident points located at 1, and the two standard equilateral triangles
drawn in the unit disk with a vertex at 1, one for each possible orientation.

Returning to mechanics, one remarks that a solution of a three-body problem means giving the
evolution in space of the three coordinates of the point masses involved. If the masses are all equal we’re
looking at the evolution of a simple triangle in the plane, thanks to the conservation laws of mechanics.
Viewing the triangle in terms of harmonic coordinates as mentioned above, the first coordinate is the
constant center of gravity of the three masses, so unmoving. Thus, to a 3-body solution correspond two
more plane curves which are the tracks of the two non-degenerate harmonic coordinates.

In the case of the new figure-eight choreography, the DFT leads to two symmetrical ’triangular
platelet boundaries’. It is known that the figure-eight orbit is not a lemniscate, or indeed parametrizable
in terms of well-known special functions. So it might seem there may be some collection of special
functions associated with Newtonian mechanics and good for parameterizing such curves.

It is appealing to see what the apparently very complicated higher-order Simé choreographies may
lead to. One takes the conventional orbits and performs a DFT as above, then plots the resulting curves.
These display visually a high degree of symmetry and regularity not apparent in the original orbits.

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28—30, 2024, Tokyo, Japan
& pion@umich.edu (P.D.F. Ion)

4 https://websites.umich.edu/~pion/ (P.D.F. Ion)
@ 0000-0002-4957-5812 (P.D.F. Ion)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

46

mailto:pion@umich.edu
https://websites.umich.edu/~pion/
https://orcid.org/0000-0002-4957-5812
https://creativecommons.org/licenses/by/4.0/deed.en

Actually Sim6’s published discussions of how he found and calculated his 343 new periodic 3-body
choreographies, and a number of choreographies for more bodies (some simple ones being just equally
spaced rings of more than 3 particles) do not provide full sets of initial conditions that allow reproducing
his results in, say, Octave (an open source analogue of Matlab). He remarks in his work that published
initial values are often not precise enough to allow numerical following of orbits that are claimed, or
indeed illustrated. So to produce the required DFT images I had to reverse engineer the (to me) rather
odd plot format made public by Simé. The results I put up on a personal website at the University
of Michigan [TonWeb]. Then I redid another version, creating SVG images using Mathematica 4, and
added those for viewing.

Early on, there was much interest in recreating the original figure-eight orbit; many people did
so. There were contributions from numerical analysis experts — such as Broucke [Broucke1975],
Hadjidemetriou [Hadjidemetriou1975], Kapela et al. [Kapela2005]— and celestial orbit people — such
as Marchal [Marchal2002], Hénon [Henon1976], Aarseth [Aarseth2003], Alexander D.Bruno, Mon-
taldi and Steckles [MontaldiSteckles2013], Gerver [Gerver2003a], Moeckel [Moeckel2012], Terracini
[Terracini2006], Ferrario [Ferrario2024], Zhifu Xie [Xie2022] — and also by others — such as Jenkins
[JenkinsWeb], Vanderbei [VanderbeiWeb]; Jenkins, a self-proclaimed amateur, like others, also created
a notable web site allowing orbit viewing using Java. The methods ranged from Runge-Kutta numerics
of various types to action minimization and other variational routines, or used built-in solvers like
those of [Mathematica], [Maple], or [Matlab] and [Octave]. At one point I counted about 40 different
approaches. Of course, a number of the web presences of these efforts have by now disappeared. Notable
to me was that though there were lots of figure eights, say, there was no clarity that they were all
describing the same orbit—the results are given as a finite sequence of computed coordinate values of
widely varying precisions. Phil Sharp [Sharp2006] (and I) produced a Matlab routine that showed the
choreographic eight, but a change of 1 part in 10'? in initial conditions splits the result into three parallel
orbits that were, of course, visually indistinguishable, if plotted ordinarily, from the true choreography’s
single repeated orbit.

More recently, in 2019, Li and Liao [LiLa02019] announced discovery of 313 more periodic collisionless
orbits. Then in 2023 Hristov, Hristova, Dmitra$inovi¢ and Tanikawa [HristovEtAI2024] announced more
than 12,000 distinct 3-body orbits, derived using newer computing hardware and a refined assignment
of symbol sequences to trajectories that made search for suitable orbits easier. They also pointed out
some edge problems with Li and Liao’s listing. It is now time to examine the new orbits from the DFT
point of view. This involves reviving some older constructions which ran fine under earlier versions of
scripting languages (e.g. Python, Javascript), graphics technology (e.g. SVG), numerical technology (e.g.,
[Octave], [Numpy] etc., Java) and symbolic computation platforms (e.g. [Mathematica] and [Maple]).

Acknowledgments

Mathematical Reviews and the University of Michigan have provided unparalleled access to the literature
of mathematics and software.

References

[Aarseth2003] Aarseth, Sverre J. Gravitational N-body simulations. Tools and algorithms. Cambridge
Monographs on Mathematical Physics. Cambridge: Cambridge University Press (ISBN 0-521-43272-
3/hbk). xv, 413 p. (2003). Zbl 1098.70001

[Broucke1975] Broucke, Roger; On relative periodic solutions of the planar general three-body problem,
Celestial Mechanics 12, 439-462 (1975).

[BrouckeBoggs1975] Broucke, Roger; Boggs, D., Periodic orbits in the planar general three-body problem,
Celest Mech, 11, 13-38 (1975) - Zbl 0303.70015

[Chen2001] Chen, Kuo-Chang, On Chenciner-Montgomery’s orbit in the three-body problem., Discrete
Contin. Dyn. Syst., 7, No. 1, 85-90, (2001), DOI: 10.3934/dcds.2001.7.85, Zbl:1093.70502

47

[ChencinerGerverEtAl2002] Chenciner, Alain; Gerver, Joseph; Montgomery, Richard; Simé, Carles
Simple choreographic motions of N bodies: a preliminary study. Newton, Paul (ed.) et al., Geometry,
mechanics, and dynamics. Volume in honor of the 60th birthday of J. E. Marsden. New York, NY:
Springer (ISBN 0-387-95518-6/hbk). 287-308 (2002).Zbl 1146.70333

[ChencinerMontgomery2000] Chenciner, A.; Montgomery, R., A remarkable periodic solution of the
three-body problem in the case of equal masses, Ann Math, 152, 3, 881-901 (2000) - Zbl 0987.70009

[Douglas1940a] Douglas, Jesse, Geometry of polygons in the complex plane. J. Math. Phys. Mass. Inst.
Tech. 19 (1940), 93-130. MR:0001574

[Douglas1940b] Douglas, Jesse, On linear polygon transformations. Bull. Amer. Math. Soc. 46 (1940),
551-560. MR:0002178

[Douglas1960] Douglas, Jesse, A theorem on skew pentagons. Scripta Math. 25 (1960) 5-9. MR:0117643

[Euler1767] Euler, Leonhard, De motu rectilineo trium corporum se mutuo attrahentium, Novi commen-
tarii academiae scientiarum Petropolitanae 11, 144-151 (1767).

[Ferrario2024] Ferrario, Davide L. Symmetries and periodic orbits for the n-body problem: about the
computational approach. Preprint, arXiv:2405.07737 [math.CA] (2024).

[Ferrario2020] Ferrario, Davide L. Fixed points and the inverse problem for central configurations. Topol.
Methods Nonlinear Anal. 56, No. 2, 579-588 (2020). Zbl 1476.55007

[Gerver2003a] Gerver, Joseph L., Noncollision singularities in the n-body problem. Dynamical systems.
Part I. Hamiltonian systems and celestial mechanics. Selected papers from the Research Trimester
held in Pisa, Italy, February 4-April 26, 2002. Pisa: Scuola Normale Superiore. Pubblicazioni del
Centro di Ricerca Matematica Ennio de Giorgi. Proceedings, 57-86 (2003). Zbl 1318.70008

[Gerver2003b] Gerver, Joseph L. Noncollision singularities: do four bodies suffice? Exp. Math. 12, No. 2,
187-198 (2003). Zbl 1254.70027

[Hadjidemetriou1975] J. D.Hadjidemetriou,]. D., The stability of periodic orbits in the three-body problem,
Celestial Mechanics 12, 255-276 (1975).

[HadjidemetriouChristides1975] Hadjidemetriou, J. D., and Christides, T., Families of periodic orbits in
the planar three-body problem, Celestial mechanics 12, 175-187 (1975).

[Henon1976] Hénon, Marcel, A family of periodic solutions of the planar three-body problem, and their
stability, Celestial mechanics 13, 267-285 (1976).

[Henon1977] Hénon, Marcel, Stability of interplay motions, Celestial mechanics 15, 243-261 (1977).

[HristovEtAl2024] Hristov, Ivan; Hristova, Radoslava; Dmitrasinovi¢, Veljko; Tanikawa, Kiyotaka
Three-body periodic collisionless equal-mass free-fall orbits revisited. (English) Zbl 07834263 Celest.
Mech. Dyn. Astron. 136, No. 1, Paper No. 7, 20 p. (2024). MSC: 70F07 70-08 arXiv preprint ; associated
data files

[Kapela2007] Kapela, Tomasz and Simd, Carles, Computer assisted proofs for nonsymmetric planar chore-
ographies and for stability of the Eight, Nonlinearity, 20, No. 5, 1241-1255, (2007), doi: 0.1088/0951-
7715/20/5/010, Zbl:1115.70008

[Kapela2005] Kapela, Tomasz, N-body choreographies with a reflectional symmetry — computer-assisted
existence proofs, EQUADIFF 2003. Proceedings of the international conference on differential equa-
tions, Hasselt, Belgium, July 22-26, 2003, 999-1004, (2005), Hackensack, NJ: World Scientific,
Zbl:1116.70019

[Kapela2003] Kapela, Tomasz and Zgliczynski, Piotr, The existence of simple choreographies for the N -
body problem — a computer-assisted proof, Nonlinearity, 16, No. 6, 1899-1918,(2003), d0i:10.1088/0951-
7715/16/6/302, Zbl:1060.70023

[Lagrangel772] Lagrange, Jean Louis, "Essai sur le probleme des trois corps, Prix de I’Academie Royale
des Sciences de Paris 9, 292 (1772).

[LiLa02017] X. Li and S. Liao, More than six hundred new families of Newtonian periodic planar colli-
sionless three-body orbits, SCIENCE CHINA Physics, Mechanics & Astronomy 60, 129511 (2017).
arXiv:1705.00527v4

[LiJingLao2018] X.Li, Y. Jing, and S. Liao, Over a thousand new periodic orbits of a planar three-body
system with unequal masses, Publications of the Astronomical Society of Japan 00, 1-7 (2018).
arXiv:1709.04775

48

https://arxiv.org/abs/2308.16159
http://db2.fmi.uni-sofia.bg/3bodyfree/
http://db2.fmi.uni-sofia.bg/3bodyfree/

[LiLiLa02021] X. Li, X. Li and S. Liao, One family of 13315 stable periodic orbits of non-hierarchical
unequal-mass triple systems, SCIENCE CHINA Physics, Mechanics & Astronomy 64, 219511 (2021).
arXiv:2007.10184

[LiaoLiYang2022] S. Liao, X. Li and Y. Yang, Three-body problem - from Newton to supercomputer plus
machine learning, New Astronomy 96, 101850 (2022). arXiv:2106.11010v2

[LiLa02019] Li, Xiaomong, Liao, Shojun Collisionless periodic orbits in the free-fall three-body problem.
New Astron. 70, 22-26 (2019). arXiv:1805.07980v1; https://doi.org/10.1016/j.newast.2019.01.003

[Marchal2002] Marchal, C., How the method of minimization of action avoids singularities. Modern
celestial mechanics: from theory to applications (Rome, 2001), Celest Mech Dyn Astron, 83, 1-4,
325-353 (2002) - Zbl 1073.70011

[Moeckel2012] Moeckel, R.; Montgomery, R.; Venturelli, A., From brake to syzygy, Arch. Ration. Mech.
Anal., 204, 1009-1060 (2012) - Zbl 1286.70014 - doi:10.1007/s00205-012-0502-y

[MontaldiSteckles2013] Montaldi, James and Steckles, Katrina, Classification of symmetry groups for
planar n-body choreographies, Forum Math. Sigma, 1, 55, Id/No e5, (2013), doi:10.1017/fms.2013.5,
Zbl 1325.37017

[Montgomery1998] Montgomery, R., The N-body problem, the braid group, and action-minimizing
periodic solutions, Nonlinearity, 11, 2, 363-376 (1998) - Zbl 1076.70503 - do0i:10.1088/0951-7715/11/2/011

[Montgomery2007] Montgomery, R., The zero angular momentum, three-body problem: all but one
solution has syzygies, Ergod. Theory Dyn. Syst., 27, 6, 1933-1946 (2007) - Zbl 1128.70005 -
doi:10.1017/50143385707000338

[Montgomery2023] Montgomery, R.: Dropping bodies. Math.Intell. 1-7. (2023)

[Moore1993] Moore, Cristopher Braids in classical dynamics. Phys. Rev. Lett. 70, No. 24, 3675-3679
(1993). Zb1:1050.37522

[Nauenberg2007] Nauenberg, Michael Continuity and stability of families of figure eight orbits with
finite angular momentum. (English) Zbl 1162.70009 Celest. Mech. Dyn. Astron. 97, No. 1, 1-15 (2007).

[Newton1687] Newton, Isaac Philosophiae naturalis principia mathematica (London: Royal Society
Press, 1687).

[Poincare1890] Poincaré, Jeam Henri, Sur le probleme des trois corps et les equations de la dynamique,
Acta Mathematica 13, 1-271 (1890).

[Schoenberg1950] Schoenberg, Isaac Jacob, The finite Fourier series and elementary geometry. Amer.
Math. Monthly 57 (1950), 390-404. MR:0036332 (12,92f)

[Schoenberg1981] Schoenberg, Isaac Jacob, The harmonic analysis of skew polygons as a source of outdoor
sculptures. The geometric vein, pp. 165-176, Springer, New York-Berlin, 1981. MR:0661776

[Schoenberg1982] Schoenberg, Isaac Jacob, Mathematical time exposures. Mathematical Association of
America, Washington, DC, 1982. ix+270 pp. ISBN: 0-88385-438-4. MR:0711022

[Sharp2004] Sharp, P. W., Comparisons of integrators on a diverse collection of restricted three-body test
problems. IMA]J. Numer. Anal. 24, No. 4, 557-575 (2004). Zbl 1059.70002

[Sharp2006] Sharp, P. W., N-body simulations: the performance of some integrators. ACM Trans. Math.
Softw. 32, No. 3, 375-395 (2006). Zbl 1230.70004

[Sharp2019] Sharp, P. W., The performance of the N-body integrator SSS. (Numer. Algorithms 81, No. 4,
1459-1472 (2019). Zbl 1416.70006

[Simo2002] Simo, Carles, Dynamical properties of the figure eight solution of the three-body problem,
Contemp Math, 292, 209-228 (2002) - Zbl 1151.70316

[SuvakovDmitrasinovic2013] Suvakov, M., and Dmitrasinovi¢, V., Three classes of Newtonian three-body
planar periodic orbits, Physical Review Letters 110, 114301 (2013).

[Terracini2006] Terracini, Susanna, On the variational approach to the periodic n-body problem. Celest.
Mech. Dyn. Astron. 95, No. 1-4, 3-25 (2006). Zbl 1219.70030

[Xie2022] Xie, Zhifu Remarks on the inverse problem of the collinear central configurations in the N-body
problem. Electron. Res. Arch. 30, No. 7, 2540-2549 (2022). Zbl 1522.70019

49

A. Online Resources

References

[IonFeat] Ion, Patrick D. F., Geometry and the Discrete Fourier Transform (2010) on AMS site with link
deficiencies ; modernized working copy on Michigan site

[IonWeb] Ion, Patrick D. F., Home page leading to N -body results (2003-2024) website

[JenkinsWeb] Jenkins, Bob, Home Page including sections on Space with non-colliding orbits, Javascript
Canvas for Gravitational Orbit Simulation website

[Maple] Maple (Version 15) website

[Matlab] Matlab website

[Mathematica] Wolfram Mathematica (Version 11.1 used); now 14.1 website

[Numpy] Numpy website

[Octave] Octave website

[VanderbeiWeb] Vanderbei, Robert J., n-body orbits gallery of varying types (ca. 2006—present); Stable
Solutions to the Planar Three-Body Problem; The Suvakov-Dmitrasinovi¢ Suite website

50

https://www.ams.org/publicoutreach/feature-column/fcarc-geo-dft
https://www.ams.org/publicoutreach/feature-column/fcarc-geo-dft
https://public.websites.umich.edu/~pion/WebGeom/Feature-AMS-revd.html
https://public.websites.umich.edu/~pion/
https://burtleburtle.net/bob/
http://www.maplesoft.com
https://www.mathworks.com/products/matlab.html
http://www.wolfram.com/mathematica/
https://numpy.org
https://octave.org
https://vanderbei.princeton.edu/WebGL/ducati.html
https://vanderbei.princeton.edu/WebGL/ducati.html
https://vanderbei.princeton.edu/WebGL/Suki.html

Grobner basis computation via learning

Hiroshi Kera™, Yuki Ishihara?, Tristan Vaccon® and Kazuhiro Yokoyama’

IChiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 2638522, Japan
“Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo, 1018308, Japan
3Université de Limoges; CNRS, XLIM, UMR 7252, Limoges, France

*Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshima-ku, Tokyo, 1718501, Japan

Abstract

Solving a polynomial system, or computing an associated Grébner basis, has been a fundamental task in compu-
tational algebra. However, it is also known for its notorious doubly exponential time complexity in the number
of variables in the worst case. This paper is the first to address the learning of Grébner basis computation with
Transformers. The training requires many pairs of a polynomial system and the associated Grébner basis, raising
two novel algebraic problems: random generation of Grobner bases and transforming them into non-Grébner
ones, termed as backward Grébner problem. We resolve these problems with 0-dimensional radical ideals, the
ideals appearing in various applications. The experiments show that our dataset generation method is at least
three orders of magnitude faster than a naive approach, overcoming a crucial challenge in learning to compute
Grobner bases, and Grébner computation is learnable in a particular class.

Keywords

Grobner Bases, Machine Learning, Transformer

1. Introduction

Understanding the properties of polynomial systems and solving them have been a fundamental problem
in computational algebra and algebraic geometry with vast applications in cryptography [1, 2], control
theory [3], statistics [4, 5], computer vision [6], systems biology [7], and so forth. Special sets of
polynomials called Grobner bases [8] play a key role to this end. In linear algebra, the Gaussian
elimination simplifies or solves a system of linear equations by transforming its coefficient matrix
into the reduced row echelon form. Similarly, a Grobner basis can be regarded as a reduced form
of a given polynomial system, and its computation is a generalization of the Gaussian elimination
to general polynomial systems. However, computing a Grébner basis is known for its notoriously
bad computational cost in theory and practice. It is an NP-hard problem with the doubly exponential
worst-case time complexity in the number of variables [9, 10]. Nevertheless, because of its importance,
various algorithms have been proposed in computational algebra to obtain Grobner bases in better
runtime. Examples include Faugeére’s F4/F5 algorithms [11, 12] and M4GB [13].

In this study, we investigate Grobner basis computation from a learning perspective, envisioning
it as a practical compromise to address large-scale polynomial system solving and understanding,
where mathematical algorithms are computationally intractable. The learning approach does not
require explicit design of computational procedures, and we only need to train a model using a large
amount of (non-Grobner set, Grobner basis) pairs. Further, if we restrict ourselves to a particular
class of Grobner bases (or associated ideals), the model may internally find some patterns useful for
prediction. The success of learning indicates the existence of such patterns, which encourages the
improvement of mathematical algorithms and heuristics. Several recent studies have already addressed

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024, Tokyo, Japan
*Corresponding author.

Q kera@chiba-u.jp (H. Kera); ishihara.yuki@nihon-u.ac.jp (Y. Ishihara); tristan.vaccon@unilim.fr (T. Vaccon);
kazuhiro@rikkyo.ac.jp (K. Yokoyama)

&} https://hkera.wordpress.com (H. Kera); https://researchmap.jp/yishihara (Y. Ishihara);
https://www.unilim.fr/pages_perso/tristan.vaccon/ (T. Vaccon)

® 0000-0002-9830-0436 (H. Kera); 0000-0003-4057-3703 (Y. Ishihara); 0000-0003-4208-8349 (T. Vaccon); 0000-0002-5072-7799
(K. Yokoyama)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

51

mailto:kera@chiba-u.jp
mailto:ishihara.yuki@nihon-u.ac.jp
mailto:tristan.vaccon@unilim.fr
mailto:kazuhiro@rikkyo.ac.jp
https://hkera.wordpress.com
https://researchmap.jp/yishihara
https://www.unilim.fr/pages_perso/tristan.vaccon/
https://orcid.org/0000-0002-9830-0436
https://orcid.org/0000-0003-4057-3703
https://orcid.org/0000-0003-4208-8349
https://orcid.org/0000-0002-5072-7799
https://creativecommons.org/licenses/by/4.0/deed.en

mathematical tasks via learning, particularly using Transformers [14, 15, 16]. For example, [14] showed
that Transformers can learn symbolic integration simply by observing many (df/dx, f) pairs in training.
The training samples are generated by first randomly generating fand computing its derivative d f/dx
and/or by the reverse process.

However, a crucial challenge in the learning of Grébner basis computation is that it is mathematically
unknown how to efficiently generate many (non-Grobner set, Grobner basis) pairs. We need an efficient
backward approach (i.e., solution-to-problem computation) because, as discussed above, the forward
approach (i.e., problem-to-solution computation) is prohibitively expensive. To this end, we frame two
problems: (i) a random generation of Grobner bases and (ii) a backward transformation from a Grébner
basis to an associated non-Grobner set. To our knowledge, neither of them has been addressed in the
study of Grobner bases because of the lack of motivations; all the efforts have been dedicated to the
forward computation from a non-Grébner set to Grobner basis.

Tackling aforementioned two unexplored algebraic problems, we investigates the first learning
approach to the Grébner computation using Transformers and experimentally show its learnability
uncovered two unexplored algebraic problems in the 0-dimensional case. Our experiments show that
the proposed dataset generation is highly efficient and faster than a baseline method by three or four
orders of magnitude. Further, we observe a learnability gap between polynomials on finite fields and
infinite fields while predicting polynomial supports are more tractable. Full version of this paper can be
found in [17].

2. New algebraic problems for dataset generation

Our notations and definitions follow [18] except that we call power products of indeterminate terms
instead of monomials. By Grobner basis computation, we mean computation of reduced Grébner bases.
Our goal is to realize Grobner basis computation through learning. To this end, we need a large training
set {(F;, G}, with finite polynomial set F; C k[x, ..., x,] and Grébner basis G; of ideal (F). As the
computation from F to G; is computationally expensive in general, we instead resort to backward
generation (i.e., solution-to-problem process); that is, we generate a Grébner basis G; randomly and
transform it to non-Grébner set F,.

Problem 2.1 (Random generation of Grébner bases). Find a collection & = {G;}X, with the reduced
Grobner basis G; C k[xy, ..., x,] of (G;), i = 1,...,m. The collection should contain diverse bases, and we
need an efficient algorithm for constructing them.

Problem 2.2 (Backward Grébner problem). Given a Gréobner basis G C k[x, ..., x,], find a collection
F = {F,-}fl:l of polynomial sets that are not Grobner bases but (F;) = (G) fori = 1,..., u. The collection
should contain diverse sets, and we need an efficient algorithm for constructing them.

Problems. 2.1 and 2.2 require the collections &, & to contain diverse polynomial sets. Thus, the algo-
rithms for these problems should not be deterministic but should have some controllable randomness.

What makes the learning of Grébner basis computation hard is that, to our knowledge, neither (i) a
random generation of Grébner basis nor (ii) the backward transform from Grobner basis to non-Grébner
set has been considered in computational algebra. Its primary interest has been instead posed on
Grobner basis computation (i.e., forward generation), and nothing motivates the random generation of
Grobner basis nor the backward transform. Interestingly, machine learning now sheds light on them.
Formally, we address the following problems for dataset generation.

In this paper, we tackle these problems in the case of radical 0-dimensional ideals. We first address
Prob. 2.1 using the fact that 0-dimensional radical ideals are generally in shape position.

Definition 2.3 (Shape position). Ideal I C k[xy, ..., x,] is called in shape position if some univariate
polynomials A, g1, ..., 8,1 € k[x,] form the reduced <jo4-Grobner basis of I as follows.

G= {h, X1 — 8155 Xp—1 — gn—l}- (21)

52

Particularly, 0-dimensional radical ideals are almost always in shape position if k is an infinite field
or finite field with large field order [19, 20]. With this fact, an efficient sampling of Grébner bases of
0-dimensional radical ideals can be realized by sampling n polynomials in k[x;,], i.e., h, g1, ..., g,—1 With
h # 0. We have to make sure that the degree of h is always greater than that of g, ..., g,_1, which is
necessary and sufficient for G to be a reduced Grébner basis. This approach involves efficiency and
randomness, and thus resolving Prob. 2.1. To address Prob. 2.2, we consider the following problem.

Problem 2.4. Let I C k[xy,...,x,]| be a 0-dimensional ideal, and let G = (g, ...,gt)T € klxq,...,x,]" be
its <-Grobner basis with respect to term order <.! Find a polynomial matrix A € k[xy, ..., x,]¥ giving a
non-Grobner set F = (f,..., f;)| = AG such that (F) = (G).

Namely, we generate a set of polynomials F = (f;, ..., f;)| from G = (gy,...,g)" by f; = 25:1 a;;g; for
i=1,...,s, where a; € k[xy, ..., x,] denotes the (i, j)-th entry of A. Note that (F) and (G) are generally
not identical, and the design of A such that (F) = (G) is of our question.

A similar question was studied without the Grébner condition in [21, 22]. They provided an algebraic
necessary and sufficient condition for the polynomial system of F to have a solution outside the variety
defined by G. This condition is expressed explicitly by multivariate resultants. However, strong
additional assumptions are required: A, F, G are homogeneous, G is a regular sequence, and in the end,
(F) = (G) is only satisfied up to saturation. Thus, they are not compatible with our setting and method
for Prob. 2.1. Our analysis gives the following results for the design A to achieve (F) = (G) for the
0-dimensional case.

Theorem 2.5. Let G = (gl,...,gt)T be a Grobner basis of a 0-dimensional ideal in k[x,...,x,]|. Let
F=(f,.... f)7 = AG with A € k[xy, ..., x,].

1. If(F) =(G), it implies s > n.
2. If A has a left-inverse in k[xy, ..., x,]"5, (F) = (G) holds.

3. The equality (F) = (G) holds if and only if there exists a matrix B € k[x, ..., x,]""® such that each
row of BA — E; is a syzygy of G, where E, is the identity matrix of sizet.

We now assume <=, and 0-dimensional ideals in shape position. Then, G has exactly n generators.
When s = n, we have the following.

Proposition 2.6. For any A € k[x, ..., x,|"" with det(A) € k \ {0}, we have (F) = (G).

As non-zero constant scaling does not change the ideal, we focus on A with det(A) = +1 without
loss of generality. Such A can be constructed using the Bruhat decomposition A = U; PU,, where
Ui, Uy € ST(n, k[xq, ..., x,]) are upper-triangular matrices with all-one diagonal entries (i.e., unimodular
upper-triangular matrices) and P € {0, 1}”*" denotes a permutation matrix. Noting that A~! satisfies
A71A = E,, we have (AG) = (G) from Thm. 2.5. Therefore, random sampling (U;, Uy, P) of unimodular
upper-triangular matrices U;, U, and a permutation matrix P resolves the backward Grébner problem for
s = n. We extend this idea to the case of s > n using a rectangular unimodular upper-triangular matrix

’
U, = (OU2) € k[x1, ..., %,]°", where Uj € k[xq, ..., x,]™" is a unimodular upper-triangular matrix and
s—n,n
Os—np € klxq, ..., %,] is the zero matrix. The permutation matrix is now P € {0, 1}°. Our strategy
is to compute F = U, PU,G, which only requires a sampling of O(s?) polynomials in k[x, ..., x,], and
O(n? + s?)-times multiplications of polynomials.

SXS

3. Experiments

We present the efficiency of our dataset generation method and the learnability of Grébner basis
computation. The experiments were conducted with 48-core CPUs, 768GB RAM, and NVIDIA RTX
A6000ada GPUs. Due to the space limitation, we cannot present full experimental setup. See the full
version in [17].

"We surcharge notations to mean that the set {g;, ..., g} defined by the vector G is a <-Grébner basis.

53

Table 1

Runtime comparison (in seconds) of forward generation (F.) and backward generation (B.) of dataset 9,(F;) of
size 1,000. The forward generation used either of the three algorithms provided in SageMath with the libSingular
backend. We set a timeout limit to five seconds (added to the total runtime at every occurrence) for each Grobner
basis computation. The numbers with and ¥ include the timeout for more than 13 % and 24 % of the runs,
respectively.

Method n=2 n=3 n=4 n=>5
F. (sTD) 4.65 129 873" 1354%
F. (SLIMGB) 4.67 149 7127 1259+
F. (STDFGLM) 5.78 12.6 44.2 360

B. (ours) .003 .005 .009 014

Dataset generation. We constructed 12 datasets Z,(k) for n € {2,3,4,5} and k € {F;,F3;, Q} and
measured the runtime of our backward generation and naive forward generation (i.e., Grébner basis
computation). In the backward generation, we sampled Grobner bases of ideals in shape position. In
this step, univariable polynomials were generically sampled in k[xy, ..., x,]<5. Next, Grébner bases were
transformed to non-Grdbner sets based on Thm. 2.5. Random polynomials in Bruhat decomposition
(ie., Uy and U)) were sampled from k[xy, ..., x,]<3 and restricted to monomials and binomials. For
Q, coefficients of all sampled polynomials were bounded as a/b with a,b € {-5,...,5} and we only
accepted F with coefficients such as a,b € {100, ..., 100}. This restriction is required from our machine
learning model and learning framework. For forward generation, we adopted three algorithms given
by SageMath [23] with the libSingular backend. For a fair comparison, forward generation computed
Grobner bases of the non-Grobner sets given by the backward generation, leading to the identical
dataset. As Tab. 1 shows, our backward generation is significant orders of magnitude faster than the
forward generation. A sharp runtime growth is observed in the forward generation as the number of
variables increases. Note that these numbers only show the runtime on 1,000 samples, while training
typically requires millions of samples. Therefore, the forward generation is almost infeasible, and the
proposed method resolves a bottleneck in the learning of Grébner basis computation.

Learning results. We used a standard Transformer (e.g., 6 encoder/decoder layers and 8 attention
heads) and a standard training setup. The batch size was set to 16, and models were trained for 8 epochs.
Each polynomial set in the datasets is converted into a sequence using the prefix representation and
the separator tokens. To make the input sequence length manageable for vanilla Transformers, we
used simpler datasets 9, (k) using Uy, U, of a moderate density o € (0, 1]. This makes the maximum
sequence length less than 5,000. Specifically, we used o = 1.0, 0.6,0.3,0.2 for n = 2,3, 4, 5, respectively.
The training set has one million samples, and the test set has one thousand samples. Table 2 shows
that trained Transformers successfully compute Grobner bases with moderate/high accuracy. Not
shown here, but we found several examples in the datasets for which Transformer successfully compute
Grobner bases significantly faster than math algorithms. The accuracy shows that the learning is
more successful on infinite field coefficients k € {Q, R} than finite field ones k = F,. This may be a
counter-intuitive observation because there are more possible coefficients in G and F for Q than F,.
Specifically, for G, the coefficient a/b € Q is restricted to those with a,b € {-5, ..., 5} (i.e., roughly 50
choices), and a,b € {-100,...,100} (i.e., roughly 20,000 choices) for F. In contrast, there are only p
choices for F;,. The performance even degrades for the larger order p = 31. Interestingly, the support
accuracy shows that the terms forming the polynomial (i.e., the support of polynomial) are correctly
identified well. Thus, Transformers have difficulty determining the coefficients in finite fields. Several
studies have also reported that learning to solve a problem involving modular arithmetic may encounter
some difficulties [24, 25, 26].

54

Table 2

Accuracy [%] / support accuracy [%] of Grobner basis computation by Transformer on 9, (k). In the
support accuracy, two polynomials are considered identical if they consist of an identical set of terms
(i.e., identical support), Note that the datasets for n = 3,4,5 are here constructed using U;,U; with
density o = 0.6, 0.3, 0.2, respectively.

Ring n=20=1 n=30=0.6 n=40=03 n=50=0.2
Qlxy, ..., x,] 94.6 /979 96.1/98.6 96.2/98.6 91.8/97.9
Filx, ..., x,] 66.6 / 76.6 78.8 / 87.6 80.9 /91.1 83.2/91.4
Fsi[xq, ... %, 44.7 / 82.7 58.5/89.3 73.9/93.9 80.0/93.4

4. Conclusion

This study proposed the first learning approach to a fundamental algebraic task, the Grobner basis
computation. While various recent studies have reported the learnability of mathematical problems by
Transformers, we addressed the first problem with nontriviality in the dataset generation. Ultimately,
the learning approach may be useful to address large-scale problems that cannot be approached by
Grobner basis computation algorithms because of their computational complexity. Transformers can
output predictions in moderate runtime. The outputs may be incorrect, but there is a chance of obtaining
a hint of a solution, as shown in our experiments. We believe that our study reveals many interesting
open questions to achieve Grobner basis computation learning.

Acknowledgments

This research was supported by JST ACT-X Grant Number JPMJAX23C8 and JSPS KAKENHI Grant
Number JP22K13901. Yuta Kambe (Mitsubishi Electric Information Technology R&D Center) is not
included in the authors due to a technical reason at submission.

References

[1] G.V.Bard, Algorithms for Solving Polynomial Systems, Springer US, 2009.

[2] T. Yasuda, X. Dahan, Y.-J. Huang, T. Takagi, K. Sakurai, MQ challenge: hardness evaluation of
solving multivariate quadratic problems, Cryptology ePrint Archive (2015).

[3] H. Park, G. Regensburger (Eds.), Grobner Bases in Control Theory and Signal Processing, De
Gruyter, 2007.

[4] P. Diaconis, B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, The
Annals of Statistics 26 (1998) 363 — 397.

[5] T.Hibi, Grobner bases. Statistics and software systems., Springer Tokyo, 2014.

[6] H. Stewenius, Grobner Basis Methods for Minimal Problems in Computer Vision, Ph.D. thesis,
Mathematics (Faculty of Engineering), 2005.

[7] R. Laubenbacher, B. Sturmfels, Computer algebra in systems biology, American Mathematical
Monthly 116 (2009) 882-891.

[8] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the
Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal), Ph.D. thesis, Mathematical
Institute, University of Innsbruck, Austria, 1965. English translation in J. of Symbolic Computation,
Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41, Number 3-4,
Pages 475-511, 2006.

[9] E. W. Mayr, A. R. Meyer, The complexity of the word problems for commutative semigroups and
polynomial ideals, Advances in Mathematics 46 (1982) 305-329.

[10] T. W. Dubé, The structure of polynomial ideals and Grobner bases, SIAM Journal on Computing
19 (1990) 750-773.

55

[11] J.-C. Faugere, A new efficient algorithm for computing Grobner bases (F4), Journal of Pure and

Applied Algebra 139 (1999) 61-88.

[12] J.-C. Faugere, A new efficient algorithm for computing Grébner bases without reduction to zero

[13]

[19]

[20]
[21]
[22]
[23]
[24]

[25]
[26]

(F5), in: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation,
ISSAC °02, Association for Computing Machinery, New York, NY, USA, 2002, p. 75-83.

R. H. Makarim, M. Stevens, M4GB: An efficient Grobner-basis algorithm, in: Proceedings of
the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC’17,
Association for Computing Machinery, New York, NY, USA, 2017, pp. 293-300.

G. Lample, F. Charton, Deep learning for symbolic mathematics, in: International Conference on
Learning Representations, 2020. URL: https://openreview.net/forum?id=S1eZYeHFDS.

L. Biggio, T. Bendinelli, A. Neitz, A. Lucchi, G. Parascandolo, Neural symbolic regression that
scales, in: Proceedings of the 38th International Conference on Machine Learning, volume 139,
2021, pp. 936-945.

F. Charton, Linear algebra with transformers, Transactions on Machine Learning Research (2022).
H. Kera, Y. Ishihara, Y. Kambe, T. Vaccon, K. Yokoyama, Learning to compute grobner bases, 2024.
arXiv:2311.12904.

D. A. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational
Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics, Springer
International Publishing, 2015.

P. Gianni, T. Mora, Algebraic solution of systems of polynomial equations using Groebner bases, in:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1989, pp. 247-257.

M. Noro, K. Yokoyama, A modular method to compute the rational univariate representation of
zero-dimensional ideals, Journal of Symbolic Computation 28 (1999) 243-263.

L. Busé, M. Elkadi, B. Mourrain, Resultant over the residual of a complete intersection, Journal of
Pure and Applied Algebra 164 (2001) 35-57.

L. Busé, Etude du résultant sur une variété algébrique, Theses, Université Nice Sophia Antipolis,
2001.

The Sage Developers, SageMath, the Sage Mathematics Software System (Version 10.0), 2023.
https://www.sagemath.org.

A. Power, Y. Burda, H. Edwards, I. Babuschkin, V. Misra, Grokking: Generalization beyond
overfitting on small algorithmic datasets, arXiv abs/2201.02177 (2022).

F. Charton, Can transformers learn the greatest common divisor?, arXiv abs/2308.15594 (2023).
A. Gromov, Grokking modular arithmetic, arXiv abs/2301.02679 (2023).

56

https://openreview.net/forum?id=S1eZYeHFDS
http://arxiv.org/abs/2311.12904

Solving Estimation Problems Using Minimax Polynomials
and Grobner Bases”

Kenta Kuramochi!, Akira Terui®* and Masahiko Mikawa?®

'Master’s Program in Mathematics, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Japan
?Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
*Institute of Library, Information and Media Science, University of Tsukuba, Tsukuba 305-8550, Japan

Abstract

We propose a method for solving the speech direction estimation problem by computer algebra. The method is
based on the function approximation using the minimax polynomial. The minimax polynomial is obtained by an
iterative method called the Remez exchange algorithm, in which Grébner bases computation is employed. We
present an effective way to compute the minimax polynomial using Grobner bases.

Keywords
Estimation problem, Function approximation, Minimax polynomial, Remez exchange algorithm, Grébner basis,
Speech direction estimation problem

1. Intorduction

In this paper, we discuss solving estimation problems with a function approximation method using the
minimax polynomial and computer algebra.

Function approximation is the technique to approximate functions. It is used to make a sequence of
polynomials for proving the density of function space [1] or to regard a function as a polynomial for
evaluation [2]. Various methods for function approximation have been proposed, such as the Maclaulin
expansion or the least squares method [2]. Here, as one of them, we present the minimax approximation
and Remez exchange algorithm. The minimax approximation is the approximation using the polynomial
which meets the property that the maximum value of the difference between the given function and
the derived polynomial is the smallest of all polynomials in a given domain. The polynomial satisfying
such a property is called the minimax polynomial. Since minimax polynomials are polynomials, one
can use algebraic computation. On the other hand, the interpolation method [2], which is frequently
used in computer algebra, estimates the polynomial based on discrete points and values on the original
function. Compared with the interpolation method, the minimax approximation is better for errors, that
is, the maximum value of errors of the minimax polynomial is less than that of the polynomial obtained
by the interpolation method in many cases. In computing the minimax polynomial, an iteration method
called the Remez exchange algorithm is used.

Estimation problems are the problems of estimating unknown information using already known
information. Solving estimation problems is important in developing devices since objects that are
measurable are limited. To solve estimation problems, one uses numerical methods such as the gradient
method [3] or the genetic Algorithms [4]. However, the gradient method may return a local solution
depending on initial values since it uses local convergence properties, and the genetic algorithm has some
disadvantages in that it sometimes solves the estimation problem not properly due to the phenomena
called initial convergence and hitchhiking. On the other hand, the estimation method using minimax

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024, Tokyo, Japan
"This work was partially supported by JKA and its promotion funds from KEIRIN RACE.

*Corresponding author.

& 52320136 @u.tsukuba.ac.jp (K. Kuramochi); terui@math.tsukuba.ac.jp (A. Terui); mikawa@slis.tsukuba.ac.jp (M. Mikawa)
&} https://researchmap.jp/aterui (A. Terui); https://mikawalab.org/ (M. Mikawa)

@ 0000-0003-0846-3643 (A. Terui); 0000-0002-2193-3198 (M. Mikawa)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5Y

57

mailto:s2320136@u.tsukuba.ac.jp
mailto:terui@math.tsukuba.ac.jp
mailto:mikawa@slis.tsukuba.ac.jp
https://researchmap.jp/aterui
https://mikawalab.org/
https://orcid.org/0000-0003-0846-3643
https://orcid.org/0000-0002-2193-3198
https://creativecommons.org/licenses/by/4.0/deed.en

approximation together with Grobner bases [5] computation may avoid these phenomena, for this
method evaluates values globally.

In this paper, we propose a method for solving estimation problems using the minimax polynomial
and Grobner bases, as follows. First, for a given mathematical model (function) of the estimation
problem, we calculate the minimax polynomial which approximates the given function. Then, we
make a system of polynomial equations and solve it with Grobner bases computation for obtaining
the solution of the estimation problem. Furthermore, we apply the proposed method to the speech
direction estimation problem, which is an estimation of the direction of a speaker using a microphone
array. For the speech direction estimation problem, a method using the Genetic Algorithm has been
proposed [6]. We show that we can effectively use the minimax approximation and Grébner bases for
finding global solutions to the speech direction estimation problem.

The paper is organized as follows. In Section 2, we review the definition of the minimax polynomial
and the Remez exchange algorithm. In Section 3, after defining the estimation problem more minutely,
we propose a solution for this using the minimax approximation and Grébner bases. In Section 4, we
introduce the speech direction estimation problem, which is the task we are working on, and explain
the reason why the method in this paper can be used. In Section 5, we conclude and pick up some
challenges we are facing and tasks to improve our tasks.

2. Preliminaries

Let K be a field. The notation K[x] or K[x, ..., x,] stands for the ring of polynomials over K in x, ..., X,.
For a function f, | f|. denotes the infinity norm of f.

2.1. Minimax Approximation

In the following, let [a, b] be a closed interval and fbe a continuous function on [a, b].

Definition 2.1 (Minimax polynomial). For the function fin above, a polynomial P € K[x] of degree k
which minimizes

- P [o¢] = - P 5
If = Pleo = max [£(x) = P(x)]
is called the k-th minimax polynomial of f.

Definition 2.1 says that, if P € K[x] is the k-th minimax polynomial of f, the inequality
—P < — ,
Jnax. [f(x) = Pl < Jnax, £ () — Q)

follows for any Q € K[x] with degQ = k. In other words, the k-th minimax polynomial is the best
polynomial in terms of error. Thus, one should use the minimax polynomial if one wants to approximate
the given function by polynomials with minimizing errors.

The following theorem [2] tells us that that that value has a minimum value.

Theorem 2.1. Ifthe function fis continuous, the f has a unique k-th minimax polynomial for any k € Z,.
Furthermore, we can construct the k-th degree minimax polynomial by Algorithm 1.

For details of Algorithm 1 such as uniqueness and termination, see [7]. Note that Algorithm 1
needs to compute the solution of a system of linear equations and the extremum points of continuous
functions. (We have implemented Algorithm 1 using a computer algebra system Risa/Asir [8] with the
library os_muldif [9] 1)

The method to approximate functions using the Remez exchange algorithm is called minimax
approximation. Note that the maximum error of f — P becomes smaller as the degree of minimax

'Solving a system of linear equations is performed by Risa/Asir itself and the function”os_md.fmmx()” in the os_muldif library
is used for computing extremum points with the extrema.

58

Algorithm 1 Remez exchange algorithm [2]

Require: a continuous function f, a closed interval [a, b], a degree of a polynomialk
Ensure: a minimax polynomial P € K[x| with degree k

I Emax = 0, Epin =0

2: I =[xy, X1,...» Xp» Xy1] : k + 2 initial interpolate points

3: while E,, >> E,;, do

4. [ay,aq,...,a E] : the solution onj-CZO aj(xl-)j +(-1E= f(x) (=0,1,....,k,k+1)

k .

5 P = 2]20 a]x]

6: I:=[xp, %1, ..., X X1 1] : the k + 2 extremum points of E(x) := f(x) — P(x)

7 Emax = max{|E(x)|, [EGep)l, ..., |EGoer1)I} Emmin = min{[E(xo)|, [EGe)L, ..., |EQoer1)1}

8: end while

9: return P

polynomial k becomes larger and the interval [a, b] more restricted. The method in this paper can
be used if functions are continuous, their range is bounded and the variable to solve is in a bounded
interval. If the variable to solve is in a bounded interval that is not closed, we can construct the minimax
polynomial over a closed one containing it.

Note that the minimax polynomial P of fhas the following property: the error function f — Phas
deg P + 2 maximum value with alternate change of singers in [a, b]. The value of | f(x) — P(x)| rapidly
becomes larger as the value x separates from [a, b].

3. The estimation problem

In this section, we introduce the method to solve estimation problems using minimax approximation
and computer algebra.

Let u = (uy, ..., u,) be measurable parameters and v = (v, ..., v;) be immeasurable parameters, and x
be the parameter to be estimated. Assume that a mathematical model describing phenomena is given as

fx)+), g@hi(w) =0, (1)

ijk

where fis a continuous function and x is bounded. Since u are measurable, one can consider f(u, x) as
a function only in x, g;(u) as a constant by substituting u and h;(v;) as a new immeasurable parameter
by replacing it with a new variable properly if necessary. Thus, fcan be approximated by the minimax
polynomial and the equation is transformed into the form of

P()+), QW =0, 2)

where Pand Q; represents the polynomials in x and v, respectively. As eq. (2) is a multivariate polynomial
equation, a system of polynomial equations can be generated by substituting measured values into
measurable parameters. Thus, Grébner bases and the Elimination Theorem [5] can be used to solve the
system.

Note that the minimax approximation is the best way to approximate a function by polynomials in
terms of errors. However, under some conditions, the minimax approximation cannot be performed. To
be able to apply the approximation, the mathematical model with the estimated parameter must be
continuous, have no other immeasurable parameters, and the estimated parameter must be in a bounded
interval. The more restricted the interval is, the better the accuracies of the minimax approximations are.
Thus this method is suitable for estimation problems in that the range of the solution of the estimated
parameters is bounded.

59

4. An example by speech direction estimation problem

Speech direction estimation problem [6] is the problem of estimating the orientation of the speaker’s
face. This problem derives from robotics. Nowadays robots have been playing important roles in various
fields and some research on robots cooperating with each other is underway [10, 11]. For such tasks,
how to select one robot from more than one is one of the themes when humans select and command
one to do some tasks. Thus, we are trying to select one robot by calling like humans saying “excuse
me” or “hey” We assume a situation in a room like we are calling one robot waiter from many in a
restaurant. Thus naming each robot is difficult.

We suppose that we know the coordinates of a user and robots, for the microphone arrays we are
assuming have a function to compute the locations of themselves and the directions of arrival (DoA)
and we can compute the user’s location using DoA. For details, see [6]. To estimate the direction of the
speaker’s face orientation, we use a mathematical model called the voice spread model. The voice spread
model is a formula to compute logical sound pressure levels recorded by a particular microphone array.
We consider the situation in which there is a speaker and microphone array mic i. To construct a voice
spread model, we need to consider two attenuation effects, distance attenuation and angle attenuation.

Distance attenuation is the effect that the longer the distance between a sound source and a sound
receiving point is, the smaller the sound pressure level of the receiving point is. Supposing a sound
source to be a point, the sound pressure level is in inverse proportion to the square of the distance.

Angle attenuation is the effect that the sound pressure level is the strongest in the front direction of
a mouth and it gets weaker when separate from the direction. There are various kinds of research on
angle attenuations [12, 13, 14] and we adopt Monson’s [15].

Let Xy be the world coordinate system, X g be the local coordinate system whose center is the user and
the x-axis is the front direction of the user’s face. Furthermore, let be the angle formed by the x-axis
of Xy and Xg. Note that 0 is the very estimated parameter. Then, the coordinate of mic i is expressed as

cosf@ sinf
Spi = () "pi —Vps).

—sinf cos6

The parameters " p, and " pg stand for the coordinate of mic i and the user in Xy, respectively. Then,
the theoretical sound pressure level L; recorded by mic i is described as

1+ cos(q)i))

£y = L= 101ogy P~ a1 - 25

Note that parameter L is the sound pressure level of the point that is 1 [m] away from the speaker and in
the direction of the speaker’s mouth. A parameter a is the size of angle attenuation and ¢; represents the
azimuth angle to mic i in 3g. Note that the parameters L and a are immeasurable and ¢; is measurable.

Let 3y be the world coordinate system, 35 be the local coordinate system whose center is the user
and x-axis is the front direction of the user’s face. Also let & be the angle formed by x-axises of Xy, and
3. Note that fis the very estimated parameter. The coordinate of mic i’s microphone array is expressed

as
s, _(cos® sinf)y
pl_(—sin6 cost9>(i~ ps)

The parameters " p; and " pg stands for the coordinate of mic i and the user in 3y respectively. Then,
the theoritical sound pressure level L; recorded by mic i is described as

L 1+ cos(<pi)>

£y = L 1010y, Ppf ~ a1 - -5

Note that parameter L is the sound pressure level of the point that is 1 [m] away from the speaker and
in the direction of the speaker’s mouse. A parameter a is the size of angle attenuation and ¢; represents
the azimuth angle to mic i in Xg. Make sure that the parameters L and a are immeasurable and ¢; is
measurable.

60

Since "p;, Wps, and ¢; are measurable parameters, one can substitute measured values into these.

1+ cos(¢; A
Thus, the term (1 - # can be alternated by a measured parameter m; and L; can be substituted

by a measured value. Thus, the equation above can be transformed into the form of
L — L+ 10log,, [p]? + am; = 0.

Since the term log; I°pil? can be regarded as a function with the variable 6 only and 6 is in a bounded
interval (—r, 7], we can approximate that term by the minimax polynomial P,(f). As a result, we have

f‘i - L+ 1OPI(6) + am; = 0.

The equation above is a multlvarlate polynom1a1 in L, 0, a for any number i. To find 0 (-7 < 0 < 7), we
need to measure parameters Wp;, Wps, ¢;, L; for given i > 3, thus we compute the Grébner bases and
make the system of equations a triangular form.

5. Concluding remarks

In this paper, we have proposed a method for estimation problems using the minimax approximation
and Grobner bases computation. As an application, we have shown that the method can be used for the
speech direction estimation problem.

To check the accuracy of the proposed method, experiments should be carried out in simulations
and actual environments. For simulations of speech direction estimation problems, Python language
has a library called Pyroomacoustics [16]. It is a software library to develop and test algorithms for
voice processing, and can simulate an environment in a room and one can adjust the properties of the
environment such as the location and the directivity of a sound source and a microphone, temperature,
humidity, dimension, size and shape of a room and so on.

Furthermore, there exist the minimax rational functions and algorithms for computing ones. The
minimax rational function of fis a rational function R, ; which minimizes

Z;-n_o ajxj
2] 0 b xJ

for given m,k € Z>,. Compared with the minimax polynomials, the minimax rational functions tend
to have less errors. However, we failed to compute one properly due to errors in the calculation of
improper integrals. We need to compute Chebyshev expansion [2] of fto construct a minimax rational
function and to compute improper integrals. In our experiment, we failed to compute improper integrals
properly due to divergence of integrands. Thus, the method to compute improper integrals with fewer
errors should be investigated.

To solve estimation problems independent of the values of measured parameters, we need to ap-
proximate multivariate functions with multivariate polynomials or rational functions. Cody [17] says
almost no algorithm for approximating those with minimax polynomials (or rational functions) exists.
However, Luke [18] has made approximations of a variety of functions in mathematical physics using
hypergeometric functions. Loeb [19] reports a linear algorithm to create rational approximations over
a discrete point set. Fox, Goldstein and Lastman [20] also have proposed an algorithm for rational
approximation on finite point sets.

The problem with which this method can be used is very limited since mathematical models that
satisfy equation (1) and estimated parameters to be bounded are very restrictive. However, direction
estimation problems are good because parameters of direction are usually bounded on (-, 7] or [0, 27).
To see the efficacy or effectiveness of this method, we should seek estimation problems that can be
solved by this method.

Jnax, |f(x) = Ry p(x)| = Jnax, flx) -

61

References

(1]
(2]

(7]
(8]

[9]

[10]

[11]

[16]

H. M. Stone, The generalized weierstrass approximation theorem, Mathematics Magazine 21
(1948) 167-184. d0i:10.2307/3029750.

H. M. Antia, Numerical methods for scientists and engineers, second ed., Basel; Boston: Birkh&user,
2002. doi:10.1007/978-93-86279-52-1.

E. Polak, Optimization: Algorithms and Consistent Approximations, Springer, 1997. doi:10.1007/
978-1-4612-0663-7.

M. Mitchell, An Introduction to Genetic Algorithms, The MIT Press, 1998. doi:10.7551/mitpress/
3927.001.0001.

D. Cox, J. Little, D. O’shea, M. Sweedler, Ideals, varieties, and algorithms: An Intorduction to
Computational Algebraic Geometry and Commutative Algebra, fourth ed., Springer, 2015. doi:10.
1007/978-3-319-16721-3.

T. Kato, Individual Selection Method for Multi-Robot based on Speech Direction Estimation (in
Japanese), Master’s thesis, Institute of Library, Information and Media Science, University of
Tsukuba, 2024. 82 pages.

N. Daili, A. Guesmia, Remez algorithm applied to the best uniform polynomial approximations,
General Mathematics Notes 17 (2013) 16-31.

M. Noro, T. Takeshima, Risa/Asir — A Computer Algebra System, in: ISSAC ’92: Papers from the
International Symposium on Symbolic and Algebraic Computation, Association for Computing
Machinery, New York, NY, USA, 1992, pp. 387-396. doi:10.1145/143242.143362.

T. Oshima, os_muldif: a library for computer algebra Risa/Asir, 2007-2024. URL: https://www.ms.
u-tokyo.ac.jp/~oshima/muldif/os_muldifeg.pdf, accessed 2024-06-05.

P. R. Wurman, R. D’Andrea, M. Mountz, Coordinating hundreds of cooperative, autonomous
vehicles in warehouses, Al Magazine 29 (2008) 9-19. doi:10.1609/aimag.v29i1.2082.

J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, P. Beardsley, Image and animation display
with multiple mobile robots, The International Journal of Robotics Research 132 (2012) 753-773.
doi:10.1177/0278364912442095.

W. T. Chu, A. Warnock, Detailed directivity of sound fields around human talkers, Technical
Report RR-104, National Research Council of Canada, 2002. doi:10.4224/20378930.

G. A. Studebaker, Directivity of the human vocal source in the horizontal plane, Ear and hearing 6
(1985) 315-319. d0i:10.1097/00003446-198511000-00007.

D. Cebrera, P. J. Davis, A. Connolly, Long-term horizontal vocal directivity of opera singers:
Effects of singing projection and acoustic environment, Journal of Voice 25 (2011) e291-e303.
doi:10.1016/j.jvoice.2010.03.001.

B. B. Monson, E. J. Hunter, B. H. Story, Horizontal directivity of low-and high-frequency energy
in speech and singing, The Journal of the Acoustical Society of America 132 (2012) 433-411.
doi:10.1121/1.4725963.

R. Scheibler, E. Bezzam, I. Dokmanié¢, Pyroomacoustics: A python package for audio room
simulation and array processing algorithms, in: 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2018, pp. 351-355. doi:10.1109/ICASSP.2018.
8461310.

W.J. Cody, A survey of practical rational and polynomial approximation of functions, SIAM
Review 12 (1970) 400-423. doi:10.1137/1012082.

Y. L. Luke, The special functions and their approximations, volume 1, Academic Press, 1969.

H. L. Loeb, Algorithms for chebyshev approximation using the ratio of linear forms, Journal of
the Society for Industrial and Applied Mathematics 8 (1960) 458—465. doi:10.1137/0108031.

P. Fox, A. Goldstein, G. Lastman, Rational approximations on finite point sets, in: Approximation
of Functions (Proc. Sympos. General Motors Res. Lab., 1964), 1965, p. 57.

62

http://dx.doi.org/10.2307/3029750
http://dx.doi.org/10.1007/978-93-86279-52-1
http://dx.doi.org/10.1007/978-1-4612-0663-7
http://dx.doi.org/10.1007/978-1-4612-0663-7
http://dx.doi.org/10.7551/mitpress/3927.001.0001
http://dx.doi.org/10.7551/mitpress/3927.001.0001
http://dx.doi.org/10.1007/978-3-319-16721-3
http://dx.doi.org/10.1007/978-3-319-16721-3
http://dx.doi.org/10.1145/143242.143362
https://www.ms.u-tokyo.ac.jp/~oshima/muldif/os_muldifeg.pdf
https://www.ms.u-tokyo.ac.jp/~oshima/muldif/os_muldifeg.pdf
http://dx.doi.org/10.1609/aimag.v29i1.2082
http://dx.doi.org/10.1177/0278364912442095
http://dx.doi.org/10.4224/20378930
http://dx.doi.org/10.1097/00003446-198511000-00007
http://dx.doi.org/10.1016/j.jvoice.2010.03.001
http://dx.doi.org/10.1121/1.4725963
http://dx.doi.org/10.1109/ICASSP.2018.8461310
http://dx.doi.org/10.1109/ICASSP.2018.8461310
http://dx.doi.org/10.1137/1012082
http://dx.doi.org/10.1137/0108031

First-Order Theorem Proving with Power Maps in
Semigroups”

YiLin**, Ranganathan Padmanabhan®' and Yang Zhang®**

'Department of Mathematics, The Ohio State University, Ohio, USA
?Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada
3Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada

Abstract

This paper deals with automated deduction techniques to prove and generalize some well-known theorems in
group theory that involve power maps, i.e., functions of the form f(x) = x". Here, the main obstacle is that if
n is interpreted as an integer variable, then these results are not expressible in first-order logic with equality.
The strategy followed here is to look at the classical proofs, involving the integer variable n, and see what
specific first-order properties of power maps that are needed in the proofs. Then we implement these first-order
properties of power maps in a theorem prover Prover9 and demonstrate that a well-designed reformulation makes
specific mathematical theories accessible to the modern first-order theorem-proving software, allowing even for
generalizations of the classical results.

Keywords
Semigroup, Prover9, Power maps

1. Introduction

The theory of groups and that of semigroups are very closely related. In fact, every group is a cancellation
semigroup and, by a classical theorem of O. Ore [14], every cancellation semigroup satisfying some
nontrivial identity, say f(x,y) = g(x,y), is embeddable in a group. Also, there are several examples of
identities f = g which are preserved during this process of expansion. The most well-known example
of a semigroup law that is transferable to groups is, of course, the commutative law. A.I. Mal’cev [8]
and B.H. Neumann [12] have shown independently that nilpotent semigroup laws are transferable.
However, it is also known that not all semigroup laws are preserved under the Ore extension. This
raises the important question of finding more (and possibly all) transferable semigroup laws. This
problem was raised by G.M. Bergman ([1, 2]).

There are several transferability theorems in semigroups that involve power maps f(x) = x". For
example, it is known that every cancellation semigroup satisfying x" - y* = y" - x" can be embedded
in a group satisfying the same identity. Such statements belong to first-order logic with equality and
hence provable, in principle, by any first-order theorem prover. However, because of the presence of an
arbitrary integer parameter n in the exponent, they are outside the scope of any first-order theorem
prover. In particular, one cannot use such an automated reasoning system to prove theorems involving
power maps. Here we focus just on the needed properties of power map f(x) = x" and show how
one can easily avoid having to reason explicitly with integer exponents. Implementing these new
equational rules of power maps, we show how a theorem prover can be a handy tool for quickly proving
or confirming the truth of such theorems involving power maps without explicitly mentioning the
integer variable n.

Following Macedonska [7], a positive semigroup law is said to be transferable if being satisfied in a
cancellative semigroup S it must be satisfied in SS™?, the group of right quotients of S. The most well-

SCSS 2024: The 10th International Symposium on Symbolic Computation in Software Science, August 28—30, Tokyo, Japan
*Corresponding author.

"These authors contributed equally.

Q yilinmaths@gmail.com (Y. Lin); Ranganathan.Padmanabhan@umanitoba.ca (R. Padmanabhan);
Yang.Zhang@umanitoba.ca (Y. Zhang)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

63

mailto:yilinmaths@gmail.com
mailto:Ranganathan.Padmanabhan@umanitoba.ca
mailto:Yang.Zhang@umanitoba.ca
https://creativecommons.org/licenses/by/4.0/deed.en

known example of a transferable law is, of course, the commutative law. A. I. Malcev, B. H. Neumann
and others ([8, 12]) have shown that nilpotent identities are transferable. Macedonska [7] has proved
the transferablity of several two-variable semigroup laws. These identities are defined by using power
maps f(x) = x" in semigroups.

Here we will replace the power map by power-like functions and prove their transferability. The
transferability of identities is first order problem but first-order theorem provers cannot handle
power-maps because of the presence of an integer variable “n”. Here we demonstrate that computers
can prove these semigroup implications, thus generalizing what is known classically.

A motivating example: It is well-known that in groups, the commutators [x, y] can be expressed in a
product of three squares, that is,

[x, y1= >y ey = (7D Gy -y
and hence x?y = yx? implies [x, y] is central, which is equivalent to the semigroup implication
xly = yx? = xyzyx = yxzxy.

Definition 1.1. A cancellation semigroup (G,) is a semigroup with the two-sided cancellative proper-
ties, i.e., for all x, y, z € G, the following are true:

(i) x-y =x-zimplies y = z,
(ii) x-y=z-yimplies x = z.

Some properties of cancellation semigroup can be found in, for example, [4, 5, 13, 7, 16, 17]. Here we
show that the above implication is valid in cancellation semigroups:

y . yxey X = yzxzxyx
= xzyzxyx
= xzy - (yx)?
= (yx)’xzy
= yxyx’zy
= yxyzyx*
= y . xyzyx - X.

Canceling yand x, we have xyzyx = yxzxy.

Next we present the proof by using Prover9 [9].

%% INPUT file

%% In groups, squares are central ==> commutators are also central
(x xy) *z=x%* (y *2z).

X * e = X.

X * x'

= e.

X *y=(y *x)* [x, y]. %% commutators defined
X * (y*y)=(y *y)* X. %% squares are central
%% goal to prove that commutators are central

x * [y, z] = [y, z] * x.

1 x * [y,z] = [y,z] * x # label(non_clause) # label(goal).

2 (xxy)*z=x=*(y*z). [].
3 x*e=x. [].

=e. [].
5X*Y=(Y*X)*[X:y]~ []

64

6 X
7 X
8 X
9 [
10
11
12
13
14
15
16
20
21
29
31
33
35
36
40
41
43
55
58
66
80
98
112
115
127
128
189
190
206
326
467
481
512
516
543
547
551
552
569

584
585
592
605
606
754
100
104

*(y * [y,x]) =y *x. [5,2].
*(yxy) =(y*y *x. [].
*(y*y)=y* (y*x). [7,2].
c2,c3] # c1 !=cl * [c2,c3]. [1].
x * (e xy) =x*vy. [3,2].
X * (x'" *xy) =e*y. [4,2].

x* (y* (x*y)') =e. [4,2].

x * (y * ([y,x] *2z)) =y * (x*2). [6,2,2,2].

X * (y*x (z* [z,x *y])) =z (x*y). [6,2].
x* (y* (z* [y=*zx])) =y=* (z*x). [2,6,2].
x* (y*(y*z)=y* (y* x=*2z)). [82222].
e * x =x. [3,8,3,10].

X * (x' *y) =vy. [11,20].

x''" = x. [4,21,3].

x * [x,y'] =y * (x*y'). [6,21].

X * (y * (x'" *x')) =x"*y. [8,21].

x' * x = e. [29,4].

x'* (x *xy) =vy. [29,21].

x * (y * [x,y]'") =y * x. [4,13,3].

x * (y* (z* [2,[x,¥y]])) =y * (x* (z* [x,¥])).[6,13].
x* (y* (z* (z* [y,x]))) =y * (x*(z*2z)). [813].
X' * (y *x) =y * [y,x]. [6,36].

x* (y *x)'" =vy'. [12,36,3].

X * (y * [y,z' * x]) =z * (y * (z' * x)). [14,21].

x*(y *(z*(u*[y*(z*u),x])))=y*(z*(u*x)).[2,15,2,2].
(x*y)' =y'" *x'. [58,36].

x* (y* (z* (z*u)) =z* (z* (x*(y*u)).[16,2,2].

X * (x * (y ¥ x')) =y *x. [4,16,3].

X % (y*x (x' * (x'" * z))) =x'"* (y *z). [16,21].
X ¥ (x * (y * (x'" *2))) =y * (x*2z). [21,16].

X * (x* (y* (z*x')) =y * (z*x). [2,115,2].
x'" % (y * x) = x * (y * x'). [115,21,29].

X * [x,y] =y * (x *y'). [55,190].

x'* (y*x (x*2z)) =x* (y* (x'"*2z)). [190,2,2,2,2].
x * (y' * [y,x]) =y' * x. [33,13,33].

x * [y,x]" =y * (x *y'). [40,36,190].

x * (yx (x" *y')) = [x',y']. [31,21].

[x',y'] = [x,y']. [31,36,326,512].

x * (y * (x' *y')) = [x,y"]. [512,516].

[x',y] = [x,y']. [206,21,543].

[x,y'] = [x,y]. [206,36,326,543].

x'" * (y * [y,x]) =y * x'. [206,36].

x ¥ [y,x] =y * (x *y').
[206,190,98,29,2,36,98,29,2,36].

[x',y] = [x,y]. [547,551].

X * (y* (x' *y')) = [x,y]. [543,551].

x' * (y* ([y,x] *z)) =y * (x' * z). [551,13].
x * (y * [x,y]) =y * x. [569,8,8,115].

[x,y] = [y,x]. [569,21,585,551].

x * (y' * [x,y]) =y' * x. [551,605].
4 [x,y]' = [y,x]. [481,21,585,551].
9 x * [y,[x,y]] = x. [21,41,584,754,21].

65

1095 [x,[y,x]] = e. [1049,21,4,584].

1157 [x,y"' * (y' * x')] = e.
[35,43,98,98,2,98,98,2,606,2,2,326,36,36,21].

1383 [x,x * (y * y)] = e. [1157,551,98,98,29,29,29,2].

1387 [x,y * (y * x)] = e. [8,1383].

1400 [x * y,x' * y] = e. [21,1387,606].

1534 [x * (y * z),x * (y' * z)] = e. [13,1400,592].

1861 x * (y * (x' * (y' * z))) = [x,y] * z. [585,2,2,2].

1863 x * (y * (z * (x' * (z' *y')))) = [x,y * z].[2,585,98].

1874 x * ([y,z] * (x' * [z,y])) = [x,[y,z]]. [1004,585].

1903 [x,y' * x] = [y,x]. [66,21,190,585,584].

2118 [x,y * x] = [y,x]. [29,1903,584].

2121 [x,x * y] = [x,y]. [36,1903,606,2118].

2148 [x' * y,[x,y]] = e. [1903,1095].

2195 [x * y,[x,y]] = e. [2118,1095].

2365 [x * y,y * x] = e. [2195,2121,2,605].

2384 [x *» y,x' * y'] = e. [2365,551,98].

2592 [x,y] * (y' * x) =X * y'.
[2148,467,98,29,3,98,29,2,552].

2674 x' % (y' x (z % (x * (2" *y)))) =[x,z * y].
[2384,80,98,3,2,2,326,98,1863].

3912 x*(y*(z*(x'*(x'*u))))=x"*(y*(z*u)).[112,21].

4517 [x,[y,z]] * ([z,y] * x) = x * [z,y]. [1004,2592,1004].

8121 x*(y*(x'*(z*(x'*z"'))))=x"*(y*[x,z]). [206,127,584].

8175 x'*(y*(z*(x*u)))=x*(y*(z*(x'*u))). [128,127,29].

8179 x'*(y*(z*(u*x)))=x*(y*(z*(u*x'))). [189,127,29].

8223 [x,y * z] = [x,z * y]. [2674,8179,8175,1863].

8383 [x * (y * z),y' * (z * x)] = e. [8223,1534,2].

13972 [x,[y,z]] = e. [8383,585,98,98,2,98,98,29,2,2,2,8179,

2,2,3912,8121,2,2,1861,1874].

14283 [x,y] * z = z * [x,y]. [4517,13972,20].

14284 $F. [14283,9].

====================== end of proof ==========================

Coda: In the human proof above, we already "knew” that commutators are expressible as a product of
squares in the group and hence the human proof was almost trivial. But in the above machine proof of
the same fact, the Prover9 is not even "aware” of the fact that commutators are products of squares. Still,
the software did prove the centrality of commutators as explicitly shown in line #14283 above (proved
with the Knuth-Bendix option). Dr. William McCune, the author of Prover9, has done a great job.

In this paper, we first consider the implication (xy)" = (yx)" in cancellation semigroups. In Section 2,
we prove that this implication is equivalent to the identity xy" = y"x in all cancellation semigroups by
replacing the power-map x" by a weaker power-like function f(x). Furthermore, we discuss a general
extension. In Section 3, we prove that xy" = y"x is transferable.

2. Power map properties

We first list some properties of power maps. We refer the readers to [11, 15] for more details.

Lemma 2.1. Let (S;-) be a cancellation semigroup and let f : S — S be the usual power map f(x) = x",
for somen > 1. Assume that f(x-y) = f(y - x). Then the function f(x) satisfies the following:

(1) x- f(x) = f(x)-x.
@) x f(y-x)=f(x-y)-x

66

(3) x and f(f(x)) commute.

(4) If x and y commute then f(x-y) = f(x)- f(y).
(5) x and f(y - x) commute.
(6) x and f(f(x)-y) commute.

Proof. (1) is obvious since both sides are equal to x™*1.

@x - fly-x)=x-(y-x)"=xy)" - x=flxy)x

(3) follows that f(f(x)) is just a power of x and hence commutes with x.
(4) is obvious thanks to associativity and commutativity.
)
)

BG)x-f(y-x)=f(x-y)-x= f(y-x)-xsince f(x-y)= f(y-x).

(
f(f(x)-»)-x = fg(x)-x-y)-x where g(x) = x""!
= f(x-y-g(x))-x since f(x-y) = f(y-x)
x- f(y-g(x)-x) by (2)above
x- f(y- f(x)) since f(x) = g(x)-x
=x-f(f(x)-y) since f(x-y) = f(y-x)

Hence the two elements x and f(f(x) - y) commute. In particular, the two terms y - x and f(f(y - x) - x)
commute. O

=)

Following the terminology of [11, 15], we call the unary functions f(x) satisfying first-order properties
(1) to (4) of Lemma 2.1 as power-like functions.

Theorem 2.2. Let S be a cancellation semigroup and let f : S — S be a power-like function and assume
that f(x-y) = f(y-x). Then f(x) is a central element in S.

We can prove this theorem by using our method and Prover9. Here we list the a few lines of output
of Prover9 which include the conditions and the final result.

========================== prooftrans ==s=========================
Prover9 (32) version Dec-2007, Dec 2007.

Process 916 was started by yangzhang

on yangzhangsimac?2.ad.umanitoba.ca,

Tue Mar 19 12:26:28 2024

The command was "/Users/yangzhang/Desktop/Prover9-Mace4-v05B.app/
Contents/Resources/bin-mac-intel/prover9".
=====================z====== elld of head ==============z==z====z======
========================== end of input =========================
============z===z========== PROQF ============z===========z===========
% —------- Comments from original proof --------

% Proof 1 at 0.84 (+ 0.02) seconds.

% Length of proof is 24.

% Level of proof is 6.

% Maximum clause weight is 29.

% Given clauses 117.

1 f(x) * y =y * £f(x) # label(non_clause) # label(goal). [goal].
2 (x*y)*z=x%* (y*z). [assumption].

3x*yl=x%z | y=2z. [assumption].

4 x*yl=z=*y | x =2z. [assumption].

5 f(x *y) = £f(y * x). [assumption].

6 f(x *y) *x=x* f(y * x). [assumption].

7

f(x) * x = x * f(x). [assumption].

67

8 f(f(x) *y) * x =x* f(f(x) * y). [assumption].
9x*yl=y*x | f(x*vy)=£f(x) * f(y). [assumption].
10 f(cl) * c2 != c2 * f(cl). [deny(1l)].

3645 f(f(x)) * x = x * £f(£f(x)). [hyper(351,a,139,a),flip(a)].

3699 £(x)* (£(x)* (y*E(£(£(x)*y))))=£(X)* (y* (£(x)*£(£(£(x)*y)))) .
[back_rewrite(395),rewrite([3645(8),2(8)])].
3700 $F. [resolve(3699,a,67,a)].

—======================= end of proof ———=——=——=——=—=—=—=——=——=—=—=—=——=—=—===

Next, we give the human proof as follows:

JG) - y-x- f(f(y-x)

= f(x): f(f(y-x))-y-x sinceuand f(f(u)) commute
=f(x-f(y-x)-y-x since x and f(y - x) commute

= f(f(x)-x)-(y-x) since f(x-y) = f(y-x)

=(y-x) f(f(y-x)-x) since y - xand f(f(y - x) - x) commute.
=y-x- flx- f(y-x) since f(x-y) = f(y-x)
=y-x-f(x)- f(f(y-x)) since xand f(y - x) commute

=y- f(x)-x- f(f(y-x)) since xand f(x) commute

Hence, we have
f&) - y-x- f(f(y-x) =y fx)-x- f(f(y-x)).
Finally, cancelling the common term x - f(f(y - x)) from the right sides, we get f(x)-y =y - f(x).

Corollary 2.3. In a cancellation semigroup (S,-), for x,y € Sandn € Z*, (x - y)" = (y - x)" implies
Mtey=y-x"

Proof. Simply take f(x) = x". The power map f(x) = x" satisfies all the six properties mentioned in
Lemma 2.1 and hence the proof of Theorem 2.2 applies. Therefore, the n-th powers are central in the
semigroup, i.e., x* -y =y - x". O]

Next we consider the following more general case.

Theorem 2.4. In a cancellation semigroup S, if there exist k > 2,n € Z™ such that (ajay - aq)" =
(ag -+~ agay)" for any a; € S holds, then x" is central in S for any x € S.

Proof. When n = 1, all the situations can be reduced to k = 2 or k = 3.
In case of n = 1 and k = 2, we have a;a; = a,a;, and then S is commutative.
In case of n = 1 and k = 3, we have ajaya3 = azaya;. Then, for any x, y,z,u € S,

XYZU = Uzxy = YzXu.

Cancelling u from the right sides, we obtain xyz = yzx. By the condition, yzx = xzy. Then xyz = xzy,
and thus yz = zy. Hence S is commutative.
Next, we consider n > 2. Note that

Xy = (e yee)t
=x-(y-y-x)

x- (T

= (xyF),

68

that is, x and (xykil)" commute, and thus (xykil)" = (ykflx)”.
Pick up m € Z* such that mn > k — 1. Now we claim the following identity holds

Y[y T =y Gy

We will combine suitable x’s and y's together and apply above commutative properties:
FY[Cy ™ = Y[y)

X[y(cy = 1ymn= L (eyk =2y

k—1)mnfl

x"[y(xy xy-y|"y
k-2

— xn[y___ yx - y(xyk—l)mn—l]ny

k-2

xn(yk—zxy(xyk—l)mn—l)ny

— x"[yk_zxy(xyk_l) . (xyk_l) (xyk—l)mn+2—k]ny
k-2
(sincemn>k—1,mn+2-k>1)

= xn[(xyk—l)mm-z—k(xyk—l) (xyk—l) Xy yk_g]ny
k-2

= €[Cey Ty
=[x GoA oy

(since x commutes with (xyk_l)" k_l)m").

and (xy
On the other hand, we have

yx”[(xyk_l)mc]” = y[x- (xyk_l)m”]” (since x and (xyk_l)m” commute)

k—1)mn—l k=2

=y [x(xy xy© eyl

k—l)mn—l . k—2]n

=y xCxy

k—1)mn—l

xy y

= [yx(xy ~xy-y|"y
Tz

=y yox - yx(xyk-Hymn=ip
Tz

=y y(xy) - x(xy
2

= [x(xyF~Hym =L (xy) - y 'y

k-2
=[G ™y

Therefore, cancelling [(xy " from the right sides of x"y[(xy = yx"[(xy
x"y = yx". O

y

k—l)mn—l]ny

k—l)mc] k—l)mn]n k—l)mc]n, we have

69

3. Transferability of (xy)" = (yx)"

Let (S, -) be a cancellation semigroup satisfying the law (xy)" = (yx)". Then, by Corollary 2.3, we know
that all the powers of n are central in S, i.e., S satisfies the identity x" - y = y - x"*. We now use the Ore
principle resulting from this identity to construct the actual group of quotients. Thus we will have
an explicit formula for the group multiplication. We show that this group multiplication satisfies the
semigroup law x" - y = y - x"*. This will prove the transferability of x" - y = y - x* from S to its Ore
group of right quotients SS™1. Since (xy)"* = (yx)" and x" - y = y - x" are equivalent in cancellation
semigroups, we get that the semigroup law (xy)" = (yx)" is also transferable.

Since the semigroup satisfies a non-trivial identity, it obviously satisfies the Ore left multiple principle
(the property Mv in Ore [14]), the group of right quotients SS™! exists. What is not obvious is that the
group also satisfies the identity.

Theorem 3.1. The semigroup law (xy)" = (yx)" is transferable in a semigroup (S, -).

Proof. We first define the multiplication and the equality of quotients. Let % and 2 be two right quotients

in the group SS~!. Thus the elements a, b, ¢, d are in S. We follow the idea of Ore and define the product
and equality of two right quotients. Note that

n—1_,n—1
prg=abted ™ = ab T e = abed b = abft_cd” bn;jf
Thus we can define the product
a c _ abn—lcdn—l
b d brdn

Also, here

~ 651 if and only if ab"1d = b"c.

S

-1 n
. Y . a _ b
Hence, the identity is ” and the inverse (b) =

Next we define the embedding map as following: for any a € S,
$: S—SS7L pa) = ?. for some gy € S.
(4

For any a,b € S, we have

aba, abagby aay bb,

$lab) = — = = ——— = ¢(a)¢(b).

(2] agbg () bo

Hence ¢ is an isomorphism.
Now we prove that % = ¢(a)p(b)"! for any a,b € S.

aay <%)‘1 aay b aalbp(bby)" !

-1 _ 7
¢(a)¢(b) = bO - ag bb(r)l - ag(bb(f)l)n

2]

Thus
aab(bb!
ay(bbg)"

Sl RS

= aalbi(bb)" " = ab™ al(bb)"
= adlbi(bbI)"1b" = aalb" 1 (bb)(bbE)"

= aalbib"(bbh)"! = aalblb"(bb1)""! (since afl, b", b} are central).

70

Hence % = ¢(a)p(b) L. Therefore, we have the following two formats for the group of quotients:

Ss71 = {% labe s} — {$(@)d®) ! | a,b € S}
For any a,b € S, we can verify the following four identities:
P(a)"$(b) = P(a"b) = ¢(ba") = p(b)p(a)".
$(@)'dp(b) ™ = ¢(b) "' p(B)p(a)*$(b) " = Pp(b) ' $(a)"P(B)p(b) " = $(b) " P(a)".

@@ 9B = GBI (Ha) Y
O O OCORY
= $OYP@

OB ORI ORI O C OB ON

L ORC OB ONON
L ORCORE

Since every element in SS! has the form ¢(a)¢(b)~!, we can conclude that both ¢(a)" and ($(a)1)"
are central in SS™! for all a € S.

Next, we prove that for any a,b € S, (%)" = [#(a)¢(b)"']" is central in SS™". For any g € 55!, we
T) T = e A g
OB ORI O ORI
— G @B g - Pla)”
= [§ba) g Y [p@pB) g - o
= [$ba Y] (@) g Pl gy

= (pl(a")" - alp(®) ™) - [p(@)p(b) 1" * g[p(a)p(b) ']
.[¢(ban—1)n—1]—1
= (pl(ba" 1) algp(0) ™) - [p@)p(b) 1" 2 glp(a)p(b) ']
{p(ba 1y 1T
(Let a’ = (ba™)" 1a)
= [¢(a)$(®) "] - [p(@p(B) 1" g[p(@)p(B) ' 1[$(a")p(@)]~

Using the deduction above again, we have

(GLB@))" alg®) ™ - [¢(a)p () 1" gl (@) 1Ip(a)p(@) 17!
[¢(a)g®) "1 - [¢(b(a’)™ "1™

= @@ algd) ™ - [$@)g®d) 1" gl d(@)p(b) 1
Tp@)yr =yt

Define
ag=a, a=a =B V)V a,...,q = (ba]’zfl)"_la.

71

Then
[p(a)p(b) ']"g

= [$(a)d®) - [¢@p®) "' g
[$(a)p(®) 71 [$(@)P(B) 1" *glp(@p(®) '] - [$laz)d(@)]~

[$(a)p®)] - (@B " Felp(@p®) 1" - [plap)p(@)]!

[$(a)p(®) "] - glp(@p®) 1" - [pla)d(@) ']~

If ¢(a,)d(b) " is central, then we have

glp@p®) 1" - [plan)p(@) 1 [p(a)p(b) ']
= glg(@p®) 1" - [p(a)p(b) ']

= glp(@)p(b) 1"

Hence, the proof is completed. Therefore, we will show that ¢(a,)$(b) ! is central as follows.
Let y = ¢(ar)p(b) 1. Then

n = ¢@pb) !, @y = (baf)" a,
$lags1) = Pl(bap Y"1 - ¢(a) = [¢(B)(ar)" 1" - $(a).
Thus
(@)PB) " = [p(D)P(a)" 1" - pa)p(b) .

That is,
Yer1 = [pOyp®]* 1" - pla)p(b)~!

= [[d®)]" -y 1" pla)p(b) !
= [@ "D yp(@)p(b) .

Continue the same deduction, and use yj_ to represent yj, we have

Yer1 = O DG 19O D (3t i1 [$(@)p(B) 12

Thus
Yo = 10 @ DGy 1 ¢(@)p(b)

= X1 x] Y[p(@P(B) TP

= x{xg -+ x5y oy [P@p(®) "
= x5 g o yi[$(@)g(®) ",

n
where x; € S,i = 1,...,2n — 2. Since all x", x € S are central, y, is central as desired. Therefore, (%) is

central, and thus the emdedding ¢ is perfect embedding. O

Acknowledgments

This project is partially supported by Mitacs Globalink Research Internship Canada NSERC.

72

References

[1] G. Bergman, Hyperidentities of groups and semigroups. Aequat. Math. 23 (1981), 55-65.

[2] G.Bergman, Questions in Algebra. Preprint, Berkeley, U.D. 1986.

[3] B. M. Green and J. R. Isbell, Problems and Solutions: Solutions of Elementary Problems: E2259.
Commuting powers in a group. The American Mathematical Monthly, 78(8)(1971): 909-910.

[4] S. V.Ivanov, A. M. Storozhev, On identities in groups of fractions of cancellative semigroups, Proc.
Amer. Math. Soc. 133 (2005), 1873-1879.

[5] J. Krempa and O. Macedonska, On identities of cancellation semigroups, Contemporary Mathematics,
Vol 131, 1992

[6] F. W. Levi, Notes on group theory. I, II, J. Indian Math. Soc. 8 (1944), 1-9.

[7] O. Macedonska and P. Slanina. On identities satisfied by cancellative semigroups and their groups of
fractions, (Preprint).

[8] AL Mal’cev, Nilpotent Groups, Ivanov Gos.Ped.Ins.Uc.zap (1953).

[9] W. McCune, Prover9, https://www.cs.unm.edu/~mccune/mace4/.

[10] G. I Moghaddam and R. Padmanabhan, Commutativity theorems for cancellative semigroups,
Semigroup Forum 95 (2017), no. 3, 448-454.

[11] G. I Moghaddam, R. Padmanabhan, and Yang Zhang, Automated reasoning with power maps.
Journal of Automated Reasoning, 64(4)(2020), 689—-697.

[12] B.H. Neumann and T. Taylor, Subsemigroups of Nilpotent Groups, Proc. Roy. Soc. Ser. A274(1963),
pp 1-4.

[13] T. Nordahi, Semigroups satisfying (xy)™ = x™y™, Semigroup Forum 8(4) (1974), 332-346.

[14] O. Ore, Linear Equations in Non-Commutative Fields Annals of Mathematics, Jul., 1931, Second
Series, Vol. 32, pp.463-477.

[15] R. Padmanabhan, and Yang Zhang, Commutativity theorems in groups with power-like maps, J.
Formaliz. Reason. 12(1) (2019), 1-10.

[16] Chen-Te Yen, Note on the commutativity of cancellative semigroups. Bulletin of the Institute of
Mathematics Academia Sinica, 10(2)(1982), 149-153.

[17] Chen-Te Yen, On the commutativity of rings and cancellative semigroups. Chinese Journal of
Mathematics, 11(2)(1983), 99-113.

73

https://www.cs.unm.edu/~mccune/mace4/

Software for indefinite integration

Corrundum.red - Integration for all

A. C.Norman?, D.]. Jeffrey?

"Trinity College, Cambridge, UK.
2Dept. Mathematics, The University of Western Ontario, London, Ontario, Canada

Abstract

The RuBt system for the evaluation of indefinite integrals was developed by Albert Rich over a period of more
than 15 years. His unexpected death has led to a number of discussions on what can be done to develop the
system further. One possible direction addresses the fact that Albert Rich’s development was built entirely on
the Mathematica system. A number of people have considered the porting of RUBI to a variety of alternative
computer algebra systems. The requirements for porting are discussed.

Keywords
Indefinite integration, Anti-derivatives, Rule-based Integration, RUBI database, Reduce, Mathematica

1. Introduction

For over 80 years, a key resource regarding indefinite integration has been Gradshteyn and Ryzhik[1].
It has also been maintained and updated over the years, the 8th edition [2] being released in 2015. The
modern alternative is one of the computer algebra systems. These have made major progress since the
1960s, when Slagle’s SAINT[3] and Moses’s SIN [4] were released. The web site 12000.org[5] reports
testing 9 currently available systems' (commercial and public domain) against a test suite of 106812
integrals. As with any test suite, it can be criticized for showing biases, but it covers all the basic
integrals and is of a scale that makes it hard to ignore. To a good approximation it is a concatenation of
all the other significant sets of test cases that its authors could find.

The commercial systems have the highest success rates, with the open source systems significantly
lower, save that the permissively licensed Rusr shows outstanding capability. We have therefore been
studying RUBI to investigate the feasibility of its use with systems other than Mathematica, which is
currently the foundation on which it is built.

We view this as being potentially valuable for four main reasons:

1. Many systems are still unable to find integrals for a significant fraction of the examples in the
above torture test. This is likely to apply to almost every case that requires advanced special
functions to express the result. Perhaps for many users this will not be a serious limitation, because
their problem will not involve say the Fresnel .S function. But measured against Gradshtein and
Ryzhik it is a limitation.

2. Where results are generated they may often be bulkier than would be ideal. This can go as far as
returning a result expressed using elliptic integrals or incorporating imaginary numbers when
something more elementary would serve better.

3. Something that may count as a special case of the above is the treatment of multi-valued functions
and delivering an integral in a form that handles them and their principal values consistently.
This can be of extreme important in integration when users substitute in endpoints to find a
definite integral.

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28—30, 2024, Tokyo, Japan
& acnl@cam.ac.uk (A. C. Norman); djeffrey@uwo.ca (D.]. Jeffrey)
® 0000-0002-2161-6803 (D.J. Jeffrey)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5Y

Mathematica, Maple, Mupad, Maxima, FriCas,Giac/Xcas, SymPy, Reduce, RUBI.

74

12000.org
mailto:acn1@cam.ac.uk
mailto:djeffrey@uwo.ca
https://orcid.org/0000-0002-2161-6803
https://creativecommons.org/licenses/by/4.0/deed.en

4. With reasonable generality, the existing schemes return integrals with no commentary available
as to how they were derived, and the techniques used are embedded in large bodies of code
which will be unavailable when one of the commercial systems is used, but opaque even if an
open source system is selected. With RuBI a commentary on how results were obtained is almost
automatically available.

2. What is RuBr?

The RUle-Based-Integration system RUBI is a public domain project addressing indefinite integration
[6]. It consists of two parts. The first part is a database consisting of transformation rules which
convert an integral expression into a simpler form, allowing an iterative application of the rules to
evaluate the initially given integral. The second part is a collection of utility functions, at present coded
in the Mathematica language, which massages mathematical expressions into forms suitable for the
application of one of the transformation rules contained in the database.

Readers not familiar with RuBi may appreciate a little background concerning the project. RUBI was
started by Albert Rich (1949-2023) circa 2007, after the development of the Derive computer algebra
system was discontinued [7]. It is based on a term-rewriting rule-based paradigm, which was expected
to bring the following benefits.

+ Speed and compactness.

« An ability to display the steps taken during an evaluation.

» Results which are correct in the complex plane.

» Results which are in the most compact and zesthetically pleasing form possible.
+ A system which is readily modified and extended.

Although Albert Rich corresponded with many others, and received their suggestions for integration
rules, he largely worked alone, and as a consequence, only lightly documented his program code.

2.1. The current state of Rusi

There are presently two versions of Rusr available. The first is 4.16.1; this is the last version whose
release was overseen by Albert Rich [6]. The other is 4.17.3, which has been retrieved from material left
by Albert Rich and implemented by supporters of Rusr [8]. The versions are very similar and can be
summarized as follows.

« There is a database containing over 7000 rules, recorded in Mathematica syntax. It is in the public
domain. They rules can be read in mathematical notation in PDFs from the RuB1 website [6].

« Rusr includes several test suites of integration problems. These form part of the test suite used
by 12000.org.

« The order in which the rules are placed can have an effect on the performance.

+ The system consists of more than the database of rules. There are large support files, also written
in Mathematica syntax, defining many auxiliary functions. These functions serve a variety of
roles.

— Testing the properties of a parameter. For most integration problems, the parameters in the
rules are given numerical values. Thus, it is assumed that a parameter can be tested to see
whether it is positive, or an integer, and so on.

- Applying an algebraic transformation, such as extracting the content of a polynomial,
making a partial fraction expansion, etc.

Unfortunately, there are very few comment lines in the files containing the auxiliary functions.
This makes working with them difficult.

75

2.2. The way forward

It is unlikely that a person or persons will come forward and take over the development of Rusr. The
attitude of the de facto custodians of Albert Rich’s legacy is that RuBt is frozen in its current state. A
person wishing to continue RuBI is allowed to use the database as they see fit, but any development
will be a new project. The analogy being made is that anyone can read a scientific paper and then write
their own paper with whatever new thoughts the author has. The author references and acknowledges
the earlier work, but is au fond working on a separate project.

There are several ways in which RuBI can be developed further.

« More integration rules can be developed.

+ There are a number of integrals in the test files which cause RuBI to disappear into a loop. A
modification of the data base could reduce the occurrence of loops.

+ RuBI could be transported to other languages, such as Maple, muPad, etc.

For those of us who do not have Mathematica installed on our computer (perhaps because of cost),
or who really value being able to inspect the workings of software whose results we rely on, or who are
developers of other algebra systems (present and future), RusI looks a very attractive starting point. As
already mentioned, at present RUBI 4.x.x exists in the form of a large set of Mathematica rewrite rules
and a significant but not-too-large collection of utility code to back them up. Albert Rich, however, had
been planning a transition to Rusi 5 that would transform the rule-set into a decision tree that would
not rely to the same extent on pattern matching in the system it was installed on. That was expected to
make it much easier to migrate Rusr for use with other systems. Unfortunately this part of the project
remains incomplete.

The work explained here is called “Corrundum.red” and is a step towards making full Rusr available
outside Mathematica. While it is being developed using the REDUCE system[9][10], the intent is to
keep reliance on the algebraic facilities in REDUCE fairly low and reasonable well explained, so that
adaptation elsewhere might be more readily possible. In particular the rule-rewrite engine does not rely
on any such engine already built into REDUCE; thus exactly what it does can be made explicitly visible.

The name "corrundum.red” is of course something of a pun, in that corrundum is crystalline aluminium
oxide with hardness 9 on the Mohs scale, and when tainted with chromium so that it shows up as a
vivid red colour you obtain the gemstone ruby. Of course “.red” is the file suffix used by the REDUCE
algebra system. So this name references Rusl (which is a sometimes-used alternate spelling for ruby); it
links to REDUCE and is intended to suggest both toughness and high value.

There have been multiple exercises to leverage the Rusi rule set in the past, so we are not the first to
look into this. In fact, a previously abandoned investigation, using REDUCE, was conducted by one of us
(ACN).

We of course note the existence of “symja" or SWM JA which aims mainly at support for Android
and is all coded in Java. That has at its core an implementation of a language rather closely modelled
on the one used by Mathematica, and as a result they have been able to import Rus1 wholesale leading
to very impressive capabilities. For our purposes this provides excellent confirmation that emulating
enough of Mathematica to make RuBI work is feasible, and it provides a non closed-source version. But
the Mathematica-style support there pervades so much of Symja that it does not help to guide those
who want only enough of it for use in some alternative system that does not start off in Java and does
not start off with Mathematica-like syntax and semantics baked in.

Especially with Albert Rich’s work migrating RuB1 from a rule-based system to one making
transitions based on a decision tree, significant parts of RuBl were made to work on Maple, how-
ever again that project seems never to have reached a stage of full support for all the rules.
https://de.maplesoft.com/company/casestudies/stories/maple-for-accuracy-and-support.aspx?L=G

Similarly Julia has the adoption of RuBI on its 2021 roadmap: https://juliasymbolics.org/roadmap/ but
the github repository that we found https://github.com/ufechner7/Rubi.jl has been inactive for some
years.

76

With all this background our work has many precedents. We hope that this paper will explain, in
more detail than we were able to find elsewhere, some of the particular challenges in this activity, while
we attempt to extricate Rusr from Mathematica syntax, semantics and support, and thus be of interest
to others who want to revive previous attempts or start new ones.

Corrundum.red has a number of components and these will be explained in the following sections.

3. Capturing the Rusi rules

A parser for the subset of Mathematica syntax used in the transformation rules was coded for REDUCE.
Happily a rather naive recursive descent parser proved sufficient. Anyone at all familiar with this style
of parser would observe that it is basically merely one procedure to correspond to each entry in the
BNF rendition of the syntax involved. This naive parser was first created a decade ago and used to start
an investigation of a version of RuBI from back then: that project stalled and the revived parser now
had to have some extensions to cope with the Mathematica syntax that has meanwhile crept into Rus1
and its utilities. Over that decade REDUCE has been provided with a parser generator using the standard
LALR scheme which could have made this scheme for reading Mathematica style text easier and much
more compact, but re-using the existing almost-working if cruder scheme seemed the simpler path.
And of course since this is just parsing expressions and not a full language the naive approach is not
seriously offensive. We believe it would also have been possible to make Mathematica export files in a
very similar format.

The result of a parse is the full set of rules expressed as Lisp-style data structures with a collection of
operators that denote the various things that Mathematica provides. So for instance the very first RuB1
rewrite starts as

(* ::Code:: x)

Int[u_.*(a_+b_.*x_An_.)Ap_.,x_Symbol] :=
Int[u* (b*xAn)Ap,x] /;

FreeQ[{a,b,n,p},x] && EqQ[a,0]

and becomes

(/;
(:=
(Int
(times
. w
(expt (plus (_ a) (times (_. b) (expt (_ x) (_. m)))) (_. p)))
(_ x Symbol))
(Int (times u (expt (times b (expt x n)) p)) x))
(and (FreeQ (bracelist a b n p) x) (EqQ a 0)))

Actually in the file as generated all punctuation characters in the parenthesised form are preceded by
escape characters so that for instance “/;” and “_ are seen as merely simple symbol names.

This adjusted format explicitly represents a parse tree and it is likely that internally Mathematica
turns the raw input into something equivalent — but what we have here is totally unambiguous and
entirely suitable for processing with any scheme that is happy to work with tree-like data structures. At
the data structure level REDUCE works with Lisp-style data and so it is especially comfortable with this,
but it would be close to trivial to write code to read this tree notation in almost any language. Given
that a simple tree-walk could re-display the material in the syntax most suitable for some other system,
be it re-creating Mathematica syntax or converting for Maple, Maxima, Axiom or whatever.

It can be seen that a rule generally has three components. A template or pattern which here is basically
[(u* (a+ bz™)P, z) and where the various annotations are to mark various things as parameters or
wildcards. Then there is the transformed version, which in this case purely serves to remove the a that

77

is originally present. Finally there is a set of conditions. These indicate that the various parameters
must all be independent of x and that this transformation that gets rid of a is only applicable when
a = 0, in this case reminding us that the actual expression may contain a sub-expression equivalent to
0 but starting off looking more complicated. Of course we all know that identifying when a general
expression is zero is undecidable!

There are almost 7500 of these rules! Using them involves facing up to (at least) two significant
challenges. One is that of gaining a sufficiently full understanding of Mathematica pattern matching
so that its behaviour against this rule-set can be re-created. The other is that throughout the Rusr
rules there are function calls in both conditions and replacements that invoke a range of Mathematica
primitives. Some (such as FreeQ here) have behavior that is simple to understand, but the precise
expectations and limitations of even something as obvious looking as EqQ[a, 0] have to cause some
pause for thought.

4. Pattern matching and the Utilities

When one first admires Rusi, what most catches the eye is the set of simple-looking tree rewrite rules.
These basically look at the structural form of integrands and on that basis perform transformations.
Furthermore it is on record that Albert Rich’s plans (for a Rusl 5) involved transforming the identification
of which rules to apply into a decision tree — in effect a giant nest of "if" statements.

Thus when we started work, in a spirit of optimism we expected that, with the rule-set expressed
as data structured such that REDUCE could manipulate it easily, our main task would be to get simple
tree-rewrites involving 7000+ rules to run reasonably efficiently.

After some while it became clear that things were not quite that straightforward.

1. When one writes Int[expression, x] in Mathematica, the expression delivered by Mathe-
matica to pattern matching definitions of Int is neither the unaltered input nor a fully simplified
version of it. It is somewhere in between. If RUBI is ported to any other world, this pre-processing
is not likely to be replicated precisely, and so behaviour will differ. As a tiny example consider
the Mathematica definition f[a_*b_] := {"product", a, b} which decomposes a product.
The input f[x+x] reveals that what Mathematica sees for matching is the product of 2 and x,
while £ [x*x] is not seen as a product at all but as a power. £[(1+x)*(x+1)] is again seen as a
power, while the more elaborate f [x* ((x+1)72-1-x42)] is not seen as having an argument
that is equivalent to 2 and so is reported as being product. All of this is perfectly proper to the
extent that it is Mathematica doing what it chooses to do, but it does make it harder to think
about testing Rubi, since the exact form of expressions it sees have been subject to this not very
clearly documented adjustment.

2. Mathematica pattern matching is powerful and it is aware that addition and multiplication are
both commutative. Thus a pattern of the form Int [a*xA2 + b*x + ¢, x] (here the underscores
are omitted to make the presentation neater) will match a quadratic regardless of the order in
which the terms are presented. So in some sense a rule with that pattern as its left-hand side
represents 6 cases corresponding to different term orderings. At one stage we considered pre-
conditioning the rule set so that all of those cases were explicitly shown and hence the actual
matching would not need to worry about this issue and hence might be simpler and faster: it
became apparent that doing so caused the size of the rule set to explode beyond reason.

3. A further cleverness of the Mathematica matcher is that in certain cases some parameters can
have default values. This is indicated by using " _. " where they are mentioned in a pattern. With
this scheme the patterna_. + b_.*x_2n_. will match not just p+q*z2k but also variants on
that with p=0 and/or q and k=1, all the way down to just z. If one combines the consequence of
this with commutativity this one pattern can match a dozen different input forms including say
z*qg+p. One rewrite rule can contain multiple instances of these two shorthands and we found
that if everything was expanded out to show the full range of cases to be accepted that we could

78

end up with well over a thousand cases following from what was presented as a single rule. This
astonished us!

4. The matching that is made has to be subject to some conditions - which are given at the end of
the rule following the symbol / ;. A first thought is to perform structural matching first and after
that check if the constraints apply. However consider a case where the pattern is (without the
underscores here) a + b*xAn + c*x7mand the constraints include m=2+*n. Now commutativity
shows that the two sub-patterns b*x2n and c*x~m could match input in either order, but only
one is will suit the constraint. The most naive approach would be to insist that the syntactic
matcher returned not just a single match but all possible ones that arise based on commutativity
and default values and that the constraints are then used to determine which (if any) are viable. In
some cases this would return very many matches. It feels more reasonable to make the structural
matcher able to deliver its first match and then backtrack to look for another if that becomes
necessary. Of course in the worst case just as many variants could have to be tried.

There are ways to address all of these issues. The pre-conditioning‘of input for instance to sort
constant terms in sums and products either to the start or the end helps substantially with commutativity.
Where we have arrived at is that we index constraints by the parameters they depend on. Then when
our pattern matcher is about to ascribe a value to a parameter it checks if that completes the information
about everything that the relevant constraints will use. It can thus test the conditions during matching
and as soon as possible, and this of course saves us from investigating parts of an expression once
we have discovered that that will be futile. With this we then accept the first viable ordering for any
commuting argument list.

We are aware that our early-check scheme could be unsatisfactory for a fully general set of rules.
Consider a complete pattern that contains both (xAn+x2m) and (xAp+x~q) and then pathologically
a constraint on n, m, p and q that is not symmetric in them. The orderings for matching the two
commuting sums would need to coordinate. We believe there are no such situations in the RuBI rule-set,
so our matcher is not fully general but should cope with requirements here. This illustrates that an
implementation of Mathematica-like matching that just has to cope with a fixed set of rules such as
those in RuBI may be able to be simpler and hence potentially faster than one that needs to come with
the most general case.

The matcher we have coded is essentially a modest size body of Lisp code and of itself it is independent
of REDUCE. It is intended to be reasonably clear and as concise as we can manage, so for instance to
cope with a commutative operator it forms a list of all permutations and then scans the list reporting the
first occasion it finds a match. It would clearly be possible to fold the enumeration of permutations with
checking them but for a first version and for “work in progress” we preferred simplicity over potential
performance gains. In a similar way and although we have thought of many ways that will allow us
to do better, we have started with checking input expressions against each of the 7000+ patterns in
turn and we have avoided exploring the interesting rabbit-hole of indexing, expression signatures and
hashing, “trie” structures and expansion of the matching process into executable code. Those are all for
further investigation at a later stage.

5. Predicate and Replacement material

On starting this project we expected that pattern matching would be the core of the work. Well, the
conditions applied to rules contain many predicates that are obvious and easy to support. For instance
for a very large proportion of parameters there is a check that the parameter does not depend on the
independent variable. For exponents there can be checks such as that n is not —1. The testm = 2% n
is slightly less obvious but once encountered is easy to handle. So at first we felt we were making good
progress as we provided more and more of those. Within the formulae that appear as results there
are cases where n is numeric and n + 1 is used, and it makes obvious sense to perform the arithmetic.
Again that was easy. Perhaps especially so as it plays to Lisp’s strengths and is all code that could
reasonably have appeared in 1960s attempts at integration! Following this path and by providing a tiny

79

set of our own integration rules we were able to perform some first integrations really rather early in
our work. At that time we felt greatly encouraged.

Beyond the trivial there are then a collection of Mathematica operations that do “genuine” algebra,
but where the intent is clear and where any other host algebra system will have something equivalent.
An example arises when a result will be of the form Log[expression] because if the expression has
a constant factor (i.e. a non-trivial content with respect to the variable of integration) then that can be
taken out and its only contribution to the result would be to merge it in with the constant of integration.
So when RuUBI uses a function RemoveContent [] that is liable to involve chaining to the underpinning
algebra system and the exact details of how that is done can not be portable but the expected returned
value is unambiguous.

Some Mathematica primitives as called here can of course represent special portability challenges and
in the end the balance as to how much of Rusr’s success flows from its own rule-set and how much from
the power of (say) the Mathematica Simplify[] function (which will apply multiple transformations
on its input and return the result that Mathematica things is nicest) is something that can not be
answered until our work is complete.

However we then found that in both predicates and especially in replacements there were instances of
function calls with significant depth. These are defined in a file IntegrationUtilityFunctions.m.
The around 8000 lines of Mathematica code there include a great many small wrappers for simple
operations that are not problematic at all, however there are other sections that gave us pause. An
example is the function Subst which is fairly cryptically explained there as “Subst[u,x,v] returns u
with all nondummy occurrences of x replaced by v and resulting constant terms replaced by 0.” but
where inspection reveals that it together with its immediate sub-functions represents around 800 lines
of code. For a while that felt like a really severe road-block.

Our eventual response has been to recognize that it is necessary to view the Utilities file as a further
set of rewrites to be handled alongside and using basically the same mechanisms as the main set of
integration rules. This is possible because much of Mathematica’s notation is close to being functional -
all the “procedure definitions” in the Utilities file can, from only a slightly different perspective, be seen
as “rewrites”.

The Utilities use a distinctly broader range of Mathematica syntax and facilities than the main set of
integration rules. This includes the various scoping constructs that interact with just how Mathematica
interprets the meaning of symbols, catch and throw, mapping over lists with what are in effect lambda
expressions and explicit in-line invocations of the pattern matcher. We have taken a pragmatic approach
— when some utility function uses "fancy" Mathematica features but is in fact fairly small or simple
we have just implemented a replacement in Lisp/REDUCE so only large and messy functions need to
be interpreted from their Mathematica form. We end up with what amounts to an interpreter for just
enough of the Mathematica language to cope with Rusi, and a scheme where any particular function
might end up either recursing in the interpreter to continue processing Mathematica forms or dropping
out into our own independent code.

As we were working on that we had arranged that any attempt to use a function that had not yet
been provided would lead to a clear message but that processing could continue (with RuBi typically
just considering the rewrite concerned inapplicable and going on to try the next). This meant that
by running the full almost 80K test cases through our code we could count which functions were
blocking progress most often. At all stages this provided us with a form of priority list. For finer grain
investigation we obviously also maintained scripts to test just a sample from the full test suite and also
to try our own hand-picked cases so that they could be run with extra tracing.

For longer than we had imagined would be the case our corrundum.red could only deliver results
for around 1% of the examples in the test suite and we perhaps started to feel a little despondent. On
implementing some more Mathematica functions to get the Utilities going at one stage boosted that so
we could solve almost 7% of the first 10000 test cases. The current state is that our code now does not
report any dangling unimplemented functions but clearly the emulation of some of Mathematica is still
buggy and for most examples the code yields a result that is a malformed formula. This is liable to be
"just a bug" and so we hope it will soon be fixed! But this paper is explicitly about "work in progress"

80

and the comments here show that that is exactly where we are.

6. Current Results

On testing cases from the RUBI test suite our performance so far is quite lamentable, with the very best
try to date managing to get proper answers for just under 7% of the cases! But this mainly reflects
some residual Mathematica primitives that have not yet been coded and debugged enough to let all
examples run to completion. However our code can show the transformations that it makes and so one
can observe the rewrite engine both when behaving well and when not.

Here is a case of mixed gladness, where there is some degree of mixture between Mathamatica
botation (eg Log) and REDUCE (eg log):

Test case 57

Use rule 2778 on Int(Log(x),X)

transforms to x*Log(x) + (-1)*x

Use rule 2779 on Int(Log(x)"2,x)

transforms to x*Log(x)"2 + (-1)*xtimes(2,x*Log(x) + (-1)*x)
(~~~ test case 57 My leafcount 19 Theirs 15)

Input:

int (log(x)"2,x)
My result:

x*log(x)r2 + (-1)*xtimes(2,x*log(x) + (-1)*x)
Reference result from Rubi test file:

2%x + (-2)*x*log(x) + x*log(x)"2

“xtimes” is our rendering of the symbol \ [Star] that Rubi introduces in some places where we suspect
it is trying to prevent Mathematica from transforming products under its feet. You can see that at
present we have not turned it back into ordinary multiplication on the way out. But you can also see
that along the way Corrundum has used two of the RusI rules (which we call numbers 2778 and 2779,
those numbers being easily decoded in our source files) and that despite its ugliness our result here
is not much bulkier than the “official” RUBI one and is basically correct. This and many other cases
illustrates that the exact form of the official Rusi result depends on what amounts to post-RuBI term
reordering and cleanup done by Mathematica, because in those cases our results can be equally correct
but just (for instance) order terms differently.

Various of the more severe problem cases we face are going to be easy to track and trace from the
sort of output we generate: first we show the input expression, then for each pattern that matches we
document both the identity of the rule triggered and the resulting transformed expression. Given that
this is all basically Lisp code it is then simple to set tracing on the functions that implement each step.

The above statement is correct in that debugging steps that are taken can be straightforward —
however there may also be instances in which Corrundum fails to make a match that RusI expects
and perhaps relies on. This could either be because of limitations in our pattern matching code or
because intermediate transforms have not left an expression in exactly the shape that Rusi expected -
for instance because reaching that shape was a consequence of fine details of Mathematica processing.

To help us track issues of that sort we are taking a second track. We have taken the full set of Rubi
rules in Mathematica format and added annotations that cause Mathematica to report on each rewrite
it makes, as in:

Test case 2: Int[x Sqrt[l + 3 x], x]

81

Rule 120

Rule 125
Rule 105
Rule 104
3/2 5/2
-2 (1 + 3 x) 2 (1 + 3 x)
Result: --------—------- + ommmm e -
27 45

and by cross referencing this against output from our system we will be able to track rewrites that
we do not make as well as debug ones that we do. Again the numbers attached to rules are ones that
have to be interpreted by indexing into our versions of the source files - they are not absolutely fixed
to the reference version of the Rusr sources. Also the rule-tracing is not the one that Rusr has as one of
its nicer features - it is one that provides yet finer grain information about the rewrites that are applied.

This sort of trace also makes it possible to identify the modest number of cases where the current
RuBI rule-set can lead to unending cycles of transformation, so that attention can be given to tidying up
there. It also has the potential to let us identify both which Rubi rules are used most (so we can improve
performance by checking for those ones first) and perhaps spotting ones that are never used at all.

As has been notes several times already this is a project still in full swing, but we believe it has
already hit a number of valuable goals:

1. In understanding the current state of Rubi;

2. Understanding much more about the way in which it intertwines with Mathematica than any
experiment that remained within the Mathematica world could;

3. Provide a somewhat freestanding rewrite engine to use the Rusi rules. The dependence we have
on ReDUCE for algebra support is fairly modest (at least in our opinion) and (maybe when we
get round to it) easy to document. The main engine we have is expressed as Lisp code (albeit
presented in REDUCE syntax that sugars it and may make it easier for outsiders to come to grips
with it;

4. Get a system that can perform some integration using the Rusl rule-set, with a real prospect that
getting a lot further is now “just debugging”. We have a “proof of concept”.

5. As we have developed this we have stashed away multiple ideas for performance engineering to
make our system rather fast.

So this has been and remains an entertaining project to have been working on, and we have now
reached a state where we would be willing to get others with suitable coding competence to join in to
push the work further, either until we have something fit to merge into REDUCE or to build on what we
have done to consider support for say Maxima, Maple or some other system.

7. Some lessons mainly about Mathematica that we have learned

The characterisation here comes from the perspective of one who is unfamiliar with Mathematica
and only confronts it through the prism of Rust. This will of course provide a tinted and distorted
impression, but it is nevertheless relevant while trying to reproduce Rusr’s behaviour. So here we
collect points, some of which have been alluded to earlier but are still things we know now that we did
not at the start of this work.

To a first approximation Mathematica has two schemes for processing algebraic expressions. There
seems to be a range of transformations that are automatically and universally made. These include cases
like 141 — 2butalso a*z*a — a?*z where terms in products are sorted and consolidated into powers
when they are sufficiently identical, but not if they are equivalent but sufficiently textually different.
There are then a wide range of functions that can explicitly perform operations such as expanding

82

products, arranging a common denominator and so on. Finally there are generic simplification functions
that try out a larger or smaller number of the explicit transformations and return what they judge to be
the nicest variant on their input that they come across.

We explain this here because a study of the RusIi sources shows clearly that Albert Rich found the
need to work around some of the details of all this. Two cases in particular illustrate this by showing
transformations only reasonably comprehensible as work-arounds to detailed Mathematica behaviour,

In Mathematica the standard trigonometric functions are named Sin, Cos, Tan and the like - with
upper case initial letters. The RuBI rules and utilities in places introduce a parallel set called sin, cos
and tan in lower case that are referred to as “inert”. Rules first convert from the standard Mathematica
versions to these ones and apply their own set of simplifications, but also at least potentially pass the
inert expressions through more general Mathematica transformations where presumably otherwise the
system would have “simplified” things in unwanted ways.

Somewhat similarly \ [Star] is used for a variant on multiplication which is processed a little differently
from the regular Mathematica one.

Finally the utility functions file contains a definition

FixIntRules[rulelist_] := Block[{Int, Subst, Simp, Star},
SetAttributes[{Int, Subst, Simp, Star},HoldAll];
Map[Function[FixIntRule[#,#[[1,1,2,1]]]], rulelist]]

where SetAttributes seems to be being used to make fairly broad adjustments to Mathematica
processing in a way that anybody not familiar with both all the Rusi rules and their intended interactions
and just what Mathematica will do with or without that directive may find challenging to decode.

A feeling that arises from all of this is that to support Rus! fully outside Mathematica it is perhaps
necessary to emulate some of the corners of Mathematica behaviour where Rust is then carefully taking
steps to allow for the fact that it did not want them to apply!

None of this is to be viewed as a criticism of either Mathematica or of that state of the final Rub1
snapshot, but it may suggest that the entanglement between them is non-trivial. A different view is
that perhaps in reality the worries expressed here will end up impacting only a small fraction of the
examples in the test suite, and in some future RUBI some adaptation or adjustment of rules may sort
that out easily. Until our work is complete we can not tell!

References

[1] LS. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Gosudarstvennoe Izdatel’stvo
Tehniko-Teoretieskoj Literatury, 1943.

[2] LS. Gradshteyn, I. M. Ryzhik, D. Zwillinger, V. Moll, Table of integrals, series, and products; 8th
ed., Academic Press, Amsterdam, 2015. URL: https://cds.cern.ch/record/1702455. doi:0123849330.

[3] J. Slagle, A heuristic program that solves symbolic integration problems in freshman calculus :
symbolic automatic integrator (SAINT), Ph.D. thesis, MIT, 1961.

[4] J. Moses, Symbolic Integration, Technical Report AC-TR-47, MIT, 1967.

[5] N. M. Abbas, Cas integration tests, 2024. https://www.12000.org/my_notes/CAS_integration_tests/
index.htm.

[6] A.D.Rich, P. Scheibe, Rubi (Rule-based Integrator), 2024. https://rulebasedintegration.org/.

[7] A.D.Rich, D.]. Jeffrey, A knowledge repository for indefinite integration based on transformation
rules, in: Intelligent Computer Mathematics — LNCS 5625, Springer, 2009, pp. 480-485.

[8] A.Rich, P. Scheibe, Rubi - rule-based integration, 2024. https://github.com/RuleBasedIntegration/
Rubi/releases/tag/4.17.3.0.

[9] A.C.Hearn, REDUCE: A user-oriented interactive system for algebraic simplification, in: M. Klerer,
J. Reinfelds (Eds.), Interactive Systems for Experimental Applied Mathematics, Academic Press,
New York, 1968, pp. 79-90.

[10] A.C.Hearn, many contributors, Reduce — a portable general-purpose computer algebra system,
2024. https://sourceforge.net/projects/reduce-algebra.

83

https://cds.cern.ch/record/1702455
http://dx.doi.org/0123849330
https://www.12000.org/my_notes/CAS_integration_tests/index.htm
https://www.12000.org/my_notes/CAS_integration_tests/index.htm
https://rulebasedintegration.org/
https://github.com/RuleBasedIntegration/Rubi/releases/tag/4.17.3.0
https://github.com/RuleBasedIntegration/Rubi/releases/tag/4.17.3.0
https://sourceforge.net/projects/reduce-algebra

Towards Trajectory Planning for a 6-Degree-of-Freedom
Robot Manipulator Considering the Orientation of the
End-effector Using Computer Algebra*

Takumu Okazaki!, Akira Terui®* and Masahiko Mikawa?®

Master’s Program in Mathematics, Graduate School of Science and Technology, University of Tsukuba, Tsukuba
305-8571, Japan

2Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
3Institute of Library, Information and Media Science, University of Tsukuba, Tsukuba 305-8550, Japan

Abstract

We consider the trajectory planning of a 6-Degree-of-Freedom (DOF) robot manipulator using computer
algebra, with controlling the orientation of the end-effector. As a first step towards the objective, we
present a solution to the inverse kinematics problem of the manipulator such that the orientation of
the end-effector remains constant using computer algebra.

Keywords

Trajectory planning, Inverse kinematic problem, Robot manipulator, Grobner basis

1. Introduction

This paper discusses the trajectory planning of a 6-Degree-of-Freedom (DOF) robot manipulator.
A manipulator is a robot resembling a human hand and comprises links that function as a
human arm and joints that function as human joints. Each link is connected for movement
relative to each other by a joint. The first link is connected to the ground, and the last link
called end-effector, contains the hand, which can be moved freely. In this paper, we consider a
manipulator called “myCobot 280" [1] (hereafter called “myCobot”) that has six joints connected
in series that can only rotate around a certain axis. Note that each joint has one degree of
freedom. Therefore, myCobot has at most six degrees of freedom.

The inverse kinematics problem is a problem of determining the joint arrangement when the
end-effector is placed in a specified direction on a certain coordinate in space. The trajectory
planning problem of the manipulator is an inverse kinematics problem in which the position
of the end-effector is expanded from a single coordinate to a trajectory. In other words, it can
be regarded as a problem to find the displacement of the joint when the end-effector of the
manipulator moves on a given trajectory from the initial position to the final position.

In computer algebra, methods for the inverse kinematics problem of a 6-DOF robot manipulator
have been proposed for more than 30 years ([2], [3]). Furthermore, several methods have
been proposed to solve the inverse kinematics problem of a manipulator using Grébner basis
computation ([4], [5], [6], [7]). Among them, two of the present authors have proposed methods
for solving the inverse kinematic problem ([8], [9]) and trajectory planning problem ([10]) of
a 3-DOF manipulator using computer algebra. In more detail, we have proposed a method
for solving the inverse kinematic problem efficiently with the use of Comprehensive Grébner

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024,
Tokyo, Japan

"This work was partially supported by JKA and its promotion funds from KEIRIN RACE.

*Corresponding author.

& 52320132@u.tsukuba.acjp (T. Okazaki); terui@math.tsukuba.ac.jp (A. Terui); mikawa@slis.tsukuba.ac.jp

(M. Mikawa)

& https://researchmap.jp/aterui (A. Terui); https://mikawalab.org/ (M. Mikawa)
@ 0000-0003-0846-3643 (A. Terui); 0000-0002-2193-3198 (M. Mikawa)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International
(CC BY 4.0).
5

84

mailto:s2320132@u.tsukuba.ac.jp
mailto:terui@math.tsukuba.ac.jp
mailto:mikawa@slis.tsukuba.ac.jp
https://researchmap.jp/aterui
https://mikawalab.org/
https://orcid.org/0000-0003-0846-3643
https://orcid.org/0000-0002-2193-3198
https://creativecommons.org/licenses/by/4.0/deed.en

jointé

end-effector ix Sz
4 4, 5 5
940 joint5 y(.,—>z Y X
4 5
3
a @ x
33/ 32
0 o
joint3)
a, x
2
y 2
joint2 1
4 J z
l)’ Ix
joint1 —>
1
(@A

Figure 1: The schematic diagram and the local coordinate systems of each joint in myCobot.

Systems (CGS) and certifying the existence of a solution to the inverse kinematic problem using
the CGS-QE, or the quantifier elimination (QE) based on the CGS computation.

In this paper, we consider the trajectory planning of a 6-DOF robot manipulator while
controlling the orientation of the end-effector using computer algebra. As a first step towards the
objective, we present a solution to the inverse kinematics problem such that the end-effector’s
orientation remains constant. More precisely, we present a solution to the inverse kinematics
problem under the condition that the end-effector’s local coordinate system overlaps the global
coordinate system by translation.

The paper is organized as follows. In Section 2, the coordinate system and the notation of the
manipulator are introduced. In Section 3, the analytical solution of general inverse kinematics
problems is first described, followed by the solution in myCobot. In Section 4, future initiatives
are described.

2. Preliminaries

2.1. Coordinate systems

For each joint in myCobot, the coordinate system is defined as follows (see Figure 1). Let
each joint be numbered as joint i from the base to the end-effector in increasing order, and the
end-effector be numbered as joint 7. Let ; be the coordinate system of joint i. Here, ; is the
reference (global) coordinate system, while the other coordinate systems are local. The axes
of each coordinate system are defined as follows: the ‘z axis in the direction of the joint axis
(rotational axis in the case of a revolute joint), ‘x axis in the direction of the common normal of
the 'z and "1z axes, and 'y axis to be a right-handed system.

2.2. Notation

For the index i, the matrices are denoted by A;, and vectors are denoted by i“;cn, in which
subscripts are used to distinguish points, and superscripts denote the local coordinate system to
which they refer (vectors with no superscripts are referenced in). If the vector is referenced
with respect to a different coordinate system, it is enclosed within brackets, and a separate

85

superscript is added outside the brackets. (e.g. ["lx,]). Scalars are expressed in lowercase
variables, and subscripts, such as g;, are used where necessary. In ;, the origin is denoted by O;

and the unit vectors are denoted by igx, igy and igz. In vector v, the i-th component is denoted by

il

2.3. The Denavit-Hartenberg convention

The ‘Denavit-Hartenberg parameters’ [11] are used as a transformation method between coor-
dinate systems. The following parameters are used in the transformations: g; as the length of
the common normal between the 'z and 1z axes, ¢ as the angle from the ‘z-axis towards the
17 axis around the "lx-axis in the clockwise direction, d; as the length between the common
normal g; and the origin of the coordinate system i, and 6, as the angle between the common
normal g; and the ‘x axis.

Let A; be the transformation matrix from ;. ; and ;. Then, as the product of matrices
representing rotation and translation, A; is expressed by using the above parameters as

cosf, —sinf;cose; sinfsing; g cosb;

sinf;, cosf;cosey —cosbising a;sing;
Ai = . (1)
0 sin ¢y cos ¢ d;
0 0 0 1

For expressing the transformation of the coordinate system, affine coordinates are used as
follows: if the coordinates of a point is expressed as '(x,'y,’z) and also as ™1("*lx,i*ly itlz),
they are denoted by ‘X = (x,'y,’z,1) and "X = (""lx, 1y, "1z 1), respectively, in which the
last coordinates represent translation. Then, by the definition of A;, we have ‘X = A/"1X and
HX = A7VX, where

cos b sin 6; 0 —a;
4ol o | sin O;cosa; cosbicosa; sing —d;sing
! sinfsingyg —cosfsing cosq —dicosq; |
0 0 0 1

If n + 1 coordinate systems are given, there exist n coordinate transformations between
neighboring coordinate systems. Therefore, if the coordinates of a point are given as ’X with
respect to ; (the end-effector), the coordinates !X of the same point with respect to ; (the global
coordinate system) is obtained by multiplying A; in sequence, such that

'X=Aeq’X, Aeq=A;AyA3ALA5As. (2)

Note that the inverse transformation is given as Aeq ' = Ag'AZ1A; ATTASATL.

3. Solving the inverse kinematic problem

3.1. The forward kinematics

We first consider the forward kinematics problem of myCobot. Let p = 0,0; be the vector
from the origin of ; (position of the root of the manipulator) to the origin of ; (position of the
end-effector), and let [= (b, l5) = '["e,], m = (my, my,ms) = 1[e,], n = (ny,ny,m5) = 1[7e] be
the vectors that are parallel to the unit vectors on the x, y, and z axes of ;, respectively. Then,

j2 I, m,n is represented with respect to ; as

ll 1 mq 0 nq 0 P 0
12 _ 0 moy _ 1 ny _ 0 P2 0
L= Aeq ol |m|™ Aeq ol |ns|™ Aeq e Aeq ,
0 0 0 0 0 0 1 1

86

therefore, each component of Aeq and Aeq ™ is obtained as

L m n p h L b —(hpr+hp+15ps)

Aeq = Ly my ny p Aeq! = my my my —(myp;+mypy +msps) 3)
L my ny p3| ng ny n3 —(nipy +nyps +n3ps)
0O 0 o0 1 0 0 0 1

As seen in eq. (3), by putting the angles of the joints 6;,..., 6 into the transformation matrix A;,
the position and orientation of the end-effector are obtained.

3.2. The inverse kinematic problem

To make use of eq. (3) in myCobot, we substitute some of the joint parameters g, o, d;,6; of
myCobot into the transformation matrix A;. As shown in the schematic diagram of myCobot in
Figure 1, where the squares represent the revolute joints and the angle of rotation 8, is given by
taking a positive counterclockwise direction with respect to the ‘z axis, the joint parameters are
given as

{0(1,0(2,0(3,0(4,(15,a6}:{77.'/2,0,0,7'[/2,77.'/2,0}, a1=d2=d3=a4=a5=a6=0. (4)

By substituting the joint parameters in eq. (4) into the transformation matrix A; in eq. (1),
Aeq is calculated. Then, by comparing the components of Aeq with the components of Aeq in
eq. (3), a system of 12 polynomial equations in the variables s; and ¢; (i = 1,...,6) is obtained,
where s; = sin6; and ¢; = cos6;. Each 6; can be obtained by selecting the appropriate equation(s)
from the above system and finding the solution. However, in the computation of Grébner
basis, the coefficients of the equations may expand, which makes it difficult to find the solution.
Therefore, we focus on the structure of myCobot and solve its inverse kinematic problem from a
different perspective as follows.

3.3. Solving the inverse kinematic problem with a fixed orientation

Inverse kinematics problems for robot manipulators of a certain structure can be solved analyti-
cally [12, 13]. Pieper [13] has pointed out that when the end effector of a 6-DOF manipulator has
a spherical joint, the inverse kinematics problem can be separated into position and orientation
problems of the end-effector. He has further noted that when the rotational axes of three consec-
utive rotational joints of a 6-DOF manipulator intersect at a single point, the inverse kinematics
problem can also be separated into position and orientation problems of the end-effector.

Pieper’s argument suggests that if there exists a combination of three consecutive rotational
joints whose rotational axes intersect at a single point, it becomes possible to solve the inverse
kinematics problem analytically. However, unfortunately, in the case of myCobot, there are no
combinations of three consecutive rotational joints whose rotational axes intersect at a single
point, although there are combinations of two consecutive joints whose rotational axes intersect
at a single point. Therefore, following Pieper’s approach, we solve the inverse kinematics problem
by imposing constraints on the orientation of the end-effector.

For simplicity, we solve the inverse kinematic problem with the condition that the orientation
of the end-effector remains constant, i.e. the axis in 5 is parallel to the axis in ; preserving the
same direction. Let [=(1,0,0),m =(0,1,0),n = (0,0, 1), then Aeq and Aeqf1 in eq. (3) become
as

100 p 100 —p
01 0 P2 -1 01 0)
Q510 0 1 p |0 7 00 1 —ps
0 0 0 1 0 0 0 1
Let P be the intersection point of axes *z and >z, expressed as
'P=0,P="(x,y,2,1). (5)

87

Note that P is the position of Joint 5. We first express sin6; and cosf, (i = 1,...,6) with the
coordinate of the intersection P.
Let 7P = O,P, then 7P is expressed in two ways as

0 —ds sin G X X =P
0 —ds cos 0 _ -
Tp_ s-1-1 _| % 6 Tp_ Y| _ |V~ P2
P=A¢ A ol = _d , 'P=Aeq . = |
1 1 1 1
By equating two vectors ’P above, we have
—x _
sinf, = P , cosbs = P2 y (6)
ds ds

Let w, be the unit vector in the direction of 4zaxis. Then, w, and 7 [Lv4] are expressed as

sin 6, cos O sin 65
—cos 0, — sin 6 sin 5
0 ’ —cosfs

0 0

wy = A1 ArAs 7wy = A AT AL (7)

By using ’ [Lv4] above and Aeq, we obtain another expression for w, as

w, = Aeq’ [w,] = "(cos 0 sin 05, — sin O sin 65, — cos 65, 0). (8)

By comparing each component of w, in egs. (7) and (8), respectively, we have
p1—Xx

cosfs =0, sinf; =41, cosf = +sinfy =+ P sinelzicose(,:ipzd;y.

9)

Next, P; = aP) is expressed as

0 dy sin6; + ay cos 0; cos 6y + a3 cos 6;(cos 6, cos 63 — sin 6, sin 65)
0 —dy cos 0; + ay sin 8 cos B, + az sin 6;(cos B, cos G5 — sin 6, sin 65)
= = . 1
By = A14x45 dy d; + ay sin 0, + az(sin 6, cos 03 + cos 6, sin 63) (10)
1 1

On the other hand, P; is also expressed as P = (x,y,z,1) as shown in eq. (5). Let Q =
P[] + 'P[2]? + (P PI3] = dy)? = P5[1]° + P3[2]° + (P3[3] — d})?, then we have

=2 4+ 2+(z—dl)2 :a2+a2+d2+2aza300593. 11
y 2 3 4

Therefore,

2, .2 2_ . 2_ 2 _ 2
x“+y*+(z—-d) —a;—a;5—4d
cosf; = y +() e R sinf; = ++/1 — (cos 63)?

2(1203
From the third component of P; and the constraints,we have
d; + ay sin B, + az(sin 6, cos B + cos B, sinby) = z, (12)
(sin6,)? + (cos 6,)% = 1. (13)
If cos 65, sin 65 is obtained, cos6,,sin 6, is easily found from eq. (12).

Finally to find cos 6, and sin6,, let ws be the unit vector in the direction of °z-axis. Then, by
using 7 [ws] expressed as

0 sin G
—1..110 cos b,
7[w5]=A61A51 . — 0 6 ,
0 0

88

we have the expression for ws in two ways as

0 cos 0 sin(6, + 0 + 6,) sin 6,

_ 0| |sind;sin(6; + 05 + 04) _ 7 | cosbs
Y5 = A1A2A3A4 1 B - COS(QZ + 93 + 94) o W5 Aeq [LVS] - 0
0 0 0

Then, by comparing each component of ws above, 6, is obtained as the one satisfying cos(f, +
05 + 0,) = 0 and sin(6, + 65 + 6,) = +1, together with the use of the additivity theorem.

We could represent sinf; and cos6; (i =1,...,6) using the coordinates of the intersection P.
Next, we want to find x,y and z.

First, comparing the third component of P, we have

_d6 =z - ps. (14.)

Next, from eq. (6) and the trigonometric identity, we have

2 2
p1—x) (Pz - y)
+ =1 15
(25 - (15)
Finally, by equating the first and the third components in the vector in the right-most-hand
of eq. (10) with x and z, respectively, we have

dy sin 6 + a, cos 0; cos 6, + as cos 0;(cos 6, cos 65 — sin G, sin B5) = x,

d; + ay sin B, + az(sin 6, cos O + cos B, sinby) = z.

Then, by substituting sinf; = Pz_y and cos6, = £ ;x in eq. (9) into the above equations, assuming
5 5
first that sinfs = 1, we have the following system of equations in sin 6,, cos 8, sin 65, cos 65:
- - X - x
dy P2y + ay i cos @, + as 2! (cos 6, cos 65 — sin 6, sin 6) = x,
ds ds 5
d; + ay sin B, + az(sin 6, cos 65 + cos b, sinbs) = z, (16)

(sin6,)? + (cos 6,)? = 1,
(sin3)? + (cos 65)? = 1,

in which the last two equations are added as trigonometric identities.
Then, the solution of the system in eq. (16) gives the value of cosf; as

1

2aza3(py — x)?

—a2x? — ax? + d?x% + d2x? - 2pydiy + 2dydsxy + d2y? — 2p?dyz + 4pydyxz — 2dyx%z

cos 0 = (=a3pt — aipt + pidf + pydy + 2a5p1x + 25 pyx — 2p1dix — 2padydsx

+ piz? — 2pyxz? +x%2%). (17)
By putting cosf; in eq. (17) into the first equation in eq. (11) and multiplying both sides by
(p; — x)?, we have

dfl’% + dfﬁ% - 2(dfP1 + dyds po)x + (df + ds% - P%)x2 + 2101953 —x*
—2d} ppy + 2dydsxy + (df — p2)y* + 2p1xy? — x*y* = 0. (18)
Py—y pr1—x

this case, the sign in egs. (17) and (18) changes in part, which gives the following equations.

In the case sinfs = —1, perform the same calculation with sin6; = . In

and cos6; =

89

1

2aza3(py — x)?

—a2x? — aix? + d?x? + dix? — 2p,d?y — 2d,dsxy + diy? — 2pPdiz + 4pydyxz — 2dyx%z

2.2 2.2 232 242 2 2 2

+ piz? — 2pxz? +x%2%), (19)

dZpt +dips — 2(dZ py — dydspo)x + (di +d2 — ph)x?® + 2pyx® — x*
— 2d2 pyy — 2dydsxy + (d7 — pP)y* + 2pixy* — x*y* = 0. (20)

Furthermore, eq. (18) or eq. (20) together with egs. (14) and (15), we obtain a system of
polynomial equations in x,y,z. Solving the system (by using Grobner basis computation, etc.)
gives the position of the intersection point P.

4. Concluding remarks

In this paper, we have proposed a solution for the inverse kinematic problem of a 6-DOF
manipulator under the condition that the orientation of the end-effector remains constant.
Our first task from here includes the verification of the solution with the CGS-QE method
and efficiently solving the system of polynomial equations by using CGS, as we have proposed in
the previous work. In addition, the orientation was specified this time for simplicity. However,
orientation is not always constant in real-world manipulators. It is therefore necessary to develop
the problem into an inverse kinematics problem for arbitrary orientations. There are several
conditions on the geometry of the 6-DOF manipulator to be analytically solvable [13], and a
method with computer algebra has been proposed for solving the inverse kinematic problem of
the 6-DOF manipulator [3]. We will look for better solutions with reference to these methods.

References

[1] Elephant Robotics, Inc., 2024, mycobot 280, URL: https://www.elephantrobotics.com/en/
mycobot-en/.

[2] M. P. Husty, Manfred L., H.-P. Schrocker, A new and efficient algorithm for the inverse
kinematics of a general serial 6R manipulator, Mehcanism and machine theory 42.1 (2007)
66-81. doi:10.1016/j .mechmachtheory.2006.02.001.

[3] D. Manocha, J. Canny, Efficient inverse kinematics for general 6r manipulators, IEEE
Transactions on Robotics and Automation 10 (1994) 648-657. doi:10.1109/70.326569.

[4] J.-C. Faugere, J.-P. Merlet, F. Rouillier, On solving the direct kinematics problem for parallel
robots, Research Report RR-5923, INRIA, 2006. URL: https://hal.inria.fr/inria-00072366.

[5] C. M. Kalker-Kalkman, An implementation of Buchbergers’ algorithm with applications to
robotics, Mech. Mach. Theory 28 (1993) 523-537. doi:10.1016/0094-114X(93)90033-R.

[6] T. Uchida, J. McPhee, Triangularizing kinematic constraint equations using Groébner
bases for real-time dynamic simulation, Multibody System Dynamics 25 (2011) 335-356.
doi:10.1007/s11044-010-9241-38.

[7] T. Uchida, J. McPhee, Using Grobner bases to generate efficient kinematic solutions for
the dynamic simulation of multi-loop mechanisms, Mech. Mach. Theory 52 (2012) 144-157.
doi:10.1016/j.mechmachtheory.2012.01.015.

[8] N. Horigome, A. Terui, M. Mikawa, A Design and an Implementation of an Inverse
Kinematics Computation in Robotics Using Grébner Bases, in: A. M. Bigatti, J. Carette,
J. H. Davenport, M. Joswig, T. de Wolff (Eds.), Mathematical Software — ICMS 2020,
Springer International Publishing, Cham, 2020, pp. 3-13. d0i:10.1007/978-3-030-52200-1_
1.

90

https://www.elephantrobotics.com/en/mycobot-en/
https://www.elephantrobotics.com/en/mycobot-en/
http://dx.doi.org/10.1016/j.mechmachtheory.2006.02.001
http://dx.doi.org/10.1109/70.326569
https://hal.inria.fr/inria-00072366
http://dx.doi.org/10.1016/0094-114X(93)90033-R
http://dx.doi.org/10.1007/s11044-010-9241-8
http://dx.doi.org/10.1016/j.mechmachtheory.2012.01.015
http://dx.doi.org/10.1007/978-3-030-52200-1_1
http://dx.doi.org/10.1007/978-3-030-52200-1_1

19]

[10]

[11]

[12]

[13]

S. Otaki, A. Terui, M. Mikawa, A Design and an Implementation of an Inverse Kinematics
Computation in Robotics Using Real Quantifier Elimination based on Comprehensive
Grébner Systems, Preprint, 2021. doi:10.48550/arXiv.2111.00384, arXiv:2111.00384.

M. Yoshizawa, A. Terui, M. Mikawa, Inverse Kinematics and Path Planning of Manipulator
Using Real Quantifier Elimination Based on Comprehensive Grobner Systems, in: Computer
Algebra in Scientific Computing: CASC 2023, volume 14139 of Lecture Notes in Computer
Science, Springer, 2023, pp. 393-419. doi:10.1007/978-3-031-41724-5_21.

B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and Control,
Springer, 2008. doi:10.1007/978-1-84628-642-1.

A. A. Brandstotter, Mathias, M. Hofbaur, An analytical solution of the inverse kinematics
problem of industrial serial manipulators with an ortho-parallel basis and a spherical wrist,
in: Proceedings of the Austrian Robotics Workshop 2014, 2014, pp. 7-11.

D. L. Pieper, The kinematics of manipulators under computer control, Stanford University,
1969. URL: https://apps.dtic.mil/sti/citations/AD0680036, accessed 2024-08-05, Ph.D. Thesis.

91

http://dx.doi.org/10.48550/arXiv.2111.00384
http://dx.doi.org/10.1007/978-3-031-41724-5_21
http://dx.doi.org/10.1007/978-1-84628-642-1
https://apps.dtic.mil/sti/citations/AD0680036

Methods for Solving the Post Correspondence
Problem and Certificate Generation

Akihiro Omori’, Yasuhiko Minamide?

'Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, Japan
?Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, Japan

Abstract

Post Correspondence Problem (PCP) is a well-known undecidable problem. Solving instances with
solutions is straightforward with exploration algorithms, but proving infeasibility is challenging. This
research introduces two methods to demonstrate infeasibility, including generating formal proofs in
Isabelle/HOL.

Keywords

Post’s Correspondence Problem, Formal Verification, Reachability Problem, Automata

1. Introduction

The Post Correspondence Problem (PCP), proposed by Post in 1946 [1], is undecidable. PCP
instances use tiles with two strings on top and bottom.

100 O 1
1 || 100 || 00

In this example, there are three kinds of tiles, each available in infinite quantities. The problem is
to determine whether it is possible to arrange one or more tiles in such a way that the reading of
the top and bottom strings matches. In this particular instance, a solution (indices of arrangement
of tiles) is “1311322”, and this shows that both the top and bottom read “1001100100100”.

100 || 1 |/ 100100 1 0 0
1 ||00]] 1 1 || 00| 100 || 100

For instances that have a solution, it is possible to find the solution within finite time using
an exploration algorithm. On the other hand, determining that no solution exists is challenging,
and due to the undecidability of the problem, no general algorithm exists for this purpose.
Previous research has proposed heuristic algorithms for finding solutions [2, 3] and Ling Zhao
(2003) [2] attempted to solve all the problems in PCP[3,4] and left 3,170 problems unsolved.
PCP[3,4] refers to a set of all instances where the number of tiles is 3, and the maximum length
of the written strings is 4.

This research makes the following three main contributions.

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024, Tokyo,
Japan

& omori.a.ab@m.titech.ac.jp (A. Omori); minamide@c.titech.ac.jp (Y. Minamide)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

w7 =] CEUR Workshop Proceedings (CEUR-WS.org)

92

mailto:omori.a.ab@m.titech.ac.jp
mailto:minamide@c.titech.ac.jp
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

» Propose two novel algorithms to demonstrate that a PCP instance has no solution.
» Solve all problems of PCP[3,4] except for 13 problems.
« Show an example of automatic proof generation for concrete problems.

2. The First Method: String Constraint Formulation

We formulate PCP as a string constraint problem.

Example 2.1 (Example of T, and Tj,). Let PCP instance I = ((1111,1110), (1101,1), (11,1111)).
We denote the top and bottom strings on the i-th tile by g; and h;, respectively. Let T, and Tj, be
transducers as defined below. Intuitively, the transducer T, outputs g; for ‘1’, g, for '2’, and does
not accept the empty string. The string wis a solution to the PCP if and only if To(w) = Tj,(w).

/1 1/1110 /1110
2/1101 2/1
—» 2/1101 —> 2/1
3/11 3/1111
3/11 3/1111
Figure 1: T, Figure 2: T,

Definition 2.2 (String Constraint of PCP). The constraint Tg(w) = Tj,(w) created in this way is
called the string constraint of instance L

Regarding the string constraint ¢ of the PCP instance I, the satisfiability is undecidable. We
consider ¢’ such that ¢(w) = ¢’(w) and is efficiently decidable. Such ¢’ is referred to as a
relaxation problem (simply relaxation) of ¢. By showing that ¢’ is unsatisfiable, we would like
to show that ¢ is also unsatisfiable. For example, considering only the number of characters
[Te(w)| = |Tp(w)| is suitable as ¢’. Additionally, matching Parikh images or the number of
specific words is another example of ¢’. Generalizing these examples, we have the following
proposition.

Proposition 2.3. Let Wbe an arbitrary total integer-vector-output transducer. Consider
W(T(w)) n W(Tp(w)) # @ (1)
This is a relaxation problem of ¢ and is decidable. We set some W and hope it is infeasible.

Although details are omitted, the condition W(Ty(w)) n W(Tj,(w)) # @ can be reduced to the
emptiness problem of a Parikh automaton constructed from W, Ty, Ty, and their product. The
Parikh automaton emptiness algorithm we use is largely similar to the one described in Section
3 of [4], so we omit the details. While not detailed here, our algorithm achieved significant
speedup by applying two techniques to this algorithm: (1) delaying and dynamically adding
constraints related to connectivity, and (2) reducing the problem to a natural form for Mixed
Integer Programming and leveraging a cutting-edge MIP solver.

93

3. The Second Method: Transition System Formulation

Intuitively, arranging each tile one by one represents a transition, and “the remaining part
of the string and whether it is on the top or bottom” represents a state. We call such a pair
configuration. PCP can be formulated as a reachability problem: “Is it possible to reach the state
of the empty string?”

Example 3.1. When arranging two tiles like

remainder 010 If a transition is made by appending

0111”7

3.1. Problem Definition

100

1

, the state representing it is “top,
0

111
01

, the next state will be “top, remainder

We formulate PCP as a reachability problem. First, we define the transition system of PCP.

Definition 3.2 (Transition System of PCP). Let I = ((gq, k1), .-, (g hs)) be a PCP instance of
size s over . We define the transition system Tr = (Q, T, Init, Bad) as follows.

« State set Q = {top, bottom} x >*.

Transition function T : Q — 29 is defined as follows.

T(bottom, w) = {(bottom, w”) | 3i <'s. wh; = gyw’} u {(top, w’) | 3i < s. whyw” = g;}

T(top, w) = {(top, w’) | 3i < s. wg; = hyw’} u {(bottom, w’) | 3i < 5. wgiw’ = h;}

« Bad state set Bad = {(top, €), (bottom, €)}.
« Intial state set Init = T(top, €).
The states after arranging one tile is considered the initial state, as an empty arrangement
is not valid.

In the following, T'is naturally extended and used as T : 29 — 29,

The behavior of the transition T(bottom, w) is illustrated below. When wis the current state,
adding (g;, h;) results in the remaining part becoming the next state w’ . There are two patterns:
one where the same side as the previous state continues, and one where the side changes.

8i

w

(a) Pattern where the side doesn’t change

w h; « e

(b) Pattern where the side changes

Definition 3.3 (Reachability Problem of PCP). Does there exist n such that

T"(Init) n Bad + @

94

Definition 3.4 (Inductive Invariant of PCP). A set Inv that satisfies the following three condi-
tions is called an inductive invariant (simply invariant).

e Init C Inv
« Invis closed under T: T(Inv) C Inv
« Invdoes not include € Bad n Inv = @

Lemma 3.5. If Invexists, then it implies that Bad is unreachable from initial states.

In the following section, we introduce algorithms to discover Inv.

3.2. Algorithm

For the Reachability Problem, many powerful algorithms like PDR (Property Directed Reacha-
bility)[5] exist. We extended PDR and achieved some success (see Section 5). We also devised a
novel ad-hoc method specific to PCP, described below.

Definition 3.6 (Configuration Automaton). Let s € {top, bottom} and A be a finite automaton
over X. We call the pair (s, A) the configuration automaton. The language of (s, A) is denoted as
L(s, A) and defined as follows. This represents a state set of the transition system.

L(s, A) = {(s,w) | we L(A)}

The aim of this algorithm is to discover a pair of configuration automata (for top and bottom)
that represents Inv. It should be noted that not every Invhas such a pair due to the regularity
of the underlying automata, which limits the scope of our consideration.

This algorithm manages a graph G = (V, E) where each node is a configuration automaton.
Specifically, each node vis associated with a set of states of a transition system. The algorithm
proceeds by expanding the overall union L(V) = |, L(v) until it becomes an invariant.

Intuitively, the edge (u, v) in this graph represents a dependency relationship. This relation-
ship means “if v cannot reach Bad, then u cannot reach Bad either”. If we can construct a graph
where every node has such dependencies and does not contain any bad state, then L(V) is an
invariant. There are two types of this relation, as follows.

1. Inclusion relation: L(u) € L(v)
2. Transition relation: T(L(u)) = L(v)

The algorithm is essentially a breadth-first search (BFS). When considering only the transition
relation, the process operates similarly to BFS. A distinctive feature of this algorithm is that
it proactively abstracts nodes. For example, when a node such as (top,0011101) appears, the
algorithm attempts to create a node like (top, .*110.%) (we use a regex to represent an automaton)
and draw an edge to it. If this abstracted node can reach Bad, it is removed and backtracking is
performed.

1 1100
represent nodes with singleton languages, and the round nodes are abstracted nodes with
regular expressions appearing in their labels. The dotted lines represent inclusion relations, and
the solid lines represent transition relations. Note that in this figure, the transition relations are
extended to n (where n > 1) steps, with intermediate steps omitted.

Figure 4 shows a successful execution example for | 1111 1 | The square nodes
11

95

bottom,11 F—"] bottom, 11100

A4

bottom,00

top,111 \ ™
bottom, 11001100

top,1

tOp,.*O-* lOp,.*OO.*

H—— T .

bottom, 100

Figure 4: Example of Graph of Invariant

4. Certificate Generation

So far, we have presented two methods and complicated algorithms. However, there is a
significant possibility that my implementations for these algorithms may contain bugs. Even
if we successfully solve all instances of PCP[3,4], our results would still be far from being
considered trusted facts. Therefore, we decided to have our algorithm output proofs in the form
of Isabelle/HOL code.

Another possible approach is to use Isabelle/HOL or similar tools to verify the correctness of
the algorithm’s implementation. However, this makes it difficult to optimize the algorithm for
speed. For instance, The first method relies on an external MIP solver for its efficiency, making
it challenging. Additionally, for others to quickly trust our results, it is crucial that all instances
of PCP[3,4] and their proofs are organized and verified within some proof assistant such as
Isabelle/HOL.

Currently, only the second method is capable of outputting a certificate. The first method
will be addressed as future work (see Section 6).

4.1. Certificate: Pair of Automata

Consider the transition system of a PCP instance. By defining the invariant concretely in
Isabelle/HOL and proving each of the invariant conditions (see Definition 3.4), we can validate
it. This method is independent of the implementation details used in the second method and
can be utilized by various algorithms discovering invariants.

Our implementation of the second method generates the following code.

1. Definition of the PCP instance
2. Definition of Inv
a) The top-side Automaton
b) The bottom-side Automaton
3. Proof of the closedness of Inv
a) Definition of T(Inv) (in the form of a specific pair of deterministic automata)

96

bottom,.*0110.*

b) Concrete definition of the automaton for Inv n T(Inv)
c) Proof of Invn T(Inv) = @
d) Proof of Invn T(Inv) similarly, and show that T(Inv) C Inv

Proofs such as “the existence of Invimplies that the PCP has no solution” were conducted
manually in advance. Examples of complete proofs are found on the author’s GitHub reposi-

tory [6].

5. Application to PCP[3,4]

In this research, we address the instances of PCP[3,4]. Ling Zhao (2003) [2] attempted to solve all
these instances but left 3,170 unsolved. The list of these instances is available on his website [7].
Our goal was to solve all instances of PCP[3,4], gradually reducing the number of unsolved
problems. As shown in Figure 5, the initial 3,170 unsolved problems were reduced to 127 using
the first method. After several additional methods, only 13 problems remained unsolved. These
remaining problems are listed on the author’s website [8].

PDR, SAT, Method2(1), and Method2(2) are techniques for discovering Inv. Certificate gener-
ation is implemented for those methods. The method SAT uses a SAT solver to discover Inv,
while Method2(1) and Method2(2) differ in their abstraction methods.

Method 1 PDR

SAT Method 2(1) Method 2(2)

Figure 5: Journey of Solving PCP[3,4]

6. Conclusion and Future Work

We have been working for a complete resolution of PCP[3,4] and came close, with only 13
instances remaining unsolved. To have these results accepted as trusted facts, we also aim to
provide formal proofs using Isabelle/HOL for each instance, which has been achieved for the
second method. Although both goals are yet to be fully achieved, we believe they are attainable
as outlined below.

To solve the remaining 13 problems, we consider two possibilities. One is to solve these
instances manually. We predict that most of the 13 problems do not have solutions, and providing
ad-hoc proofs by humans might be the quickest way. The other possibility involves devising
new variants of the methods in this paper or investing additional computational resources.
Since the manual approach can also help gain deeper insights into individual instances and PCP
itself, we would like to first aim for manual resolution.

Generating certificates for the first method is challenging because it uses an external Mixed
Integer Programming (MIP) solver as a subroutine. Generating a certificate for the feasibility
of an MIP is straightforward, as it merely requires providing a specific solution. However,

97

generating a certificate for infeasibility is more difficult. Cheung et al. (2017) [9] extended the
existing MIP solver SCIP to output easily verifiable certificates in their own format. We believe
that we can overcome this difficulty by converting these certificates into Isabelle/HOL code.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 19K11899 and 24K14891.

References

[1] E. L. Post, A variant of a recursively unsolvable problem, Bulletin of the American
Mathematical Society 52 (1946) 264—268.

[2] L. Zhao, Tackling Post’s correspondence problem, in: Computers and Games, Springer
Berlin Heidelberg, 2003, pp. 326—-344.

[3] R.J.Lorentz, Creating difficult instances of the post correspondence problem, in: Computers
and Games, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 214-228.

[4] N. Verma, H. Seidl, T. Schwentick, On the complexity of equational horn clauses, 2005, pp.
337-352. doi:10.1007/11532231_25.

[5] A.R.Bradley, Sat-based model checking without unrolling, in: Proceedings of the 12th
International Conference on Verification, Model Checking, and Abstract Interpretation,
VMCATI'11, Springer-Verlag, Berlin, Heidelberg, 2011, p. 70-87.

L. Zhao, Pcp documents, 2002. URL: https://webdocs.cs.ualberta.ca/~games/PCP.
A. Omori, Unresolved problems, 2024. URL: https://pcp-vis.pages.dev/gallery.

F. Eisenbrand, J. Koenemann (Eds.), Integer Programming and Combinatorial Optimization,
Springer International Publishing, Cham, 2017, pp. 148-160.

98

http://dx.doi.org/10.1007/11532231_25
https://github.com/Mojashi/pcp-proof
https://webdocs.cs.ualberta.ca/~games/PCP
https://pcp-vis.pages.dev/gallery

A Stable Computation of Multivariarte Apporximate GCD
Based on SVD and Lifting Technique

Masaru Sanuki®*f

nstitute of Medicine, University of Tsukuba, Ten-noudai 1-1-1, Tsukuba-shi, Ibaraki 305-8575, Japan

Abstract

For univariate polynomials, the approximate GCD can be obtained by computing the null space of the subresultant
matrix of given polynomials. In this study, for multivariate polynomials, we propose a method for computing null
space of the subresultant matrix within polynomials stably and efficiently, which is based on the SVD (singular
value decomposition) and lifting techniques. Therefore, we show the multivariate approximate GCD can be also
computed by using subresultant matrix. In addition, we describe an ill-conditioned case (initial factors have
approximate common factor) and solve them.

Keywords
Approximate GCD, Lifting technique, Ill-conditioned cases

1. Preliminaries

Let F'(x,t) and G(z,t) be multivariate polynomials in F[x, ¢y, ..., t;] = F[x, t] (x is the main variable
and t = (ty,...,t;) are sub-variables), and be expressed as
F(z,t) = F(z,t)C(x,t) + Ap = fm(£)z™ + ...+ fo(t),

Here, F',G,C, A, Ag are polynomials in F[x,], and when ||Ar|| < ||F|| and ||A¢|| < ||G]], C is
called an approximate factor of F' and G. In particular, the approximate factor of maximum degree is
called approximate GCD, which is denoted by gcd(F, G).

Various algorithm exist for the approximate GCD of univariate polynomials. However, there are
few stable all-purpose methods for a large number of variables in a multivariate case. Numerical-
based methods are stable but significantly less efficient, so we have tried to improve efficiency by
combining lifting methods [4]. In this study, we challenge the stable computation of the null space of
the subresultant within polynomial entries.

First, we review the method for the subresultant matrix for multivariate polynomials. For the resultant
within polynomials, we propose a QRGCD-like method over truncated power-series polynomials, it
is efficient [5]. For the null space of the subresultant matrix, Gao et al. and Zeng-Dayton proposed
SVD-based methods for numeric matrices at the same conference [2, 7], where the SVD is the singular
value decomposition for matrix. These matrices are sparse and the size are also huge extremely although
the degree of given polynomial is not large. Lifting techniques is known for solving of equation modulo
an ideal I and lifting them to solution modulo 12, I3, ... in order to get the ideal adic completion.
Here [is an ideal as [= (t] — s1,...,t; — 8¢) with (s1,...,s.) € F (in this paper, (s1,. .., s¢) is the
origin). For multivariate GCD computation, the EZ-GCD method is well-known lifting method based
on Hensel’s lemma, however, its approximate computation will be unstable when initial factors have an
approximate common factor [8].

In this paper, we propose a stable multivariate approximate GCD computation, which is based on the
SVD and lifting techniques. It is able to compute the approximate GCD even though initial factors have
approximate common factors.

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28—30, 2024, Tokyo, Japan
*Corresponding author.
& sanuki@md.tsukuba.ac.jp (M. Sanuki)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

99

mailto:sanuki@md.tsukuba.ac.jp
https://creativecommons.org/licenses/by/4.0/deed.en

2. Framework of algorithm

In this paper, we discuss non-singular case only, i.e., F(x,0) - G(z,0) # 0 and f,,(0) - g»(0) # 0. For
non-singular case, every polynomial P(x,t) is transform to P(z,T,t) = P(x,Tty,...,Tty), with T
is the total-degree variable. Every polynomial P(x, T, t) is represented as the sum of homogeneous
polynomials w.r.t. the total-degree variable T’

P, T,t) = PO@) +T-6PD(x,t)+...+T" 6P (2, t) +...,
PW(z,T,t) = PO@)+T 6PV (x,t)+...4+T% 6P (z, t).

In non-singular case, the following two conditions exist: deg(gcd(F, G)) < deg(ged(F©), G))
and ged(F, G)|ged(F©, G©). In such situations, lifting algorithms can be applied. The proposed
algorithm is discussed in the next section.

2.1. Computing cofactors of F' and G via lifting method

Let S;(F,G) = S; € F[t, T](m+n=20)x(m+n=2i) he an jth-subresultant matrix of F and G w.r.t. z, and
be represented as

fm 9n
S = fmfnfk fm In—m—k gn

fm—n—k In—m—k
= SO471.6sW ot p1v58M 4

where SZ»(O) = 582-(0) € Flmn=20)x(m+n=2i) and (551@) € F[t)(mtn=20x(mtn=20) for 4y > 1.
When k = deg(ged(F,G)) = deg(gcd(F©),G0)), it is well-known as the null space of Sj,_;
corresponds to G and F, and rank(Si—1) = K — 1where K =m —(k—1)+n— (k—1).

computation of cofactors for univariate part: SVD

Cofactors of F(9) and G() can be obtained from the null space of Sli(i)l. In this paper, we compute the

null space of 815(1)1 using the SVD [1]. Using the SVD of Sli(i)l, we obtain the following decomposition:

SV = vsvT=(uw - ug) E

where K =m — (k—1) +n— (k—1),U and V are orthogonal matrices, and o; are singular vectors

with o1 > 09 > ... > 01 > ox > 0, respectively. Then, vi € Ker(S](cO_)l), and it is one of the

(

solutions ofSk,O_lz =0isz =70 = vy
",
g(O)
v = | —Zor— | , with |Jvk|]2 = 1.
_fm—k
+(0)
—fo

100

Computation of cofactors for multivariate part: lifting method

Suppose we have () = 7(®=1) 4 §7(®) Here, §7(*) is a vector generated by homogenious polynomials
with total-degree w w.r.t. T. Then, 67(*+1) is generated as follows. Note that the following consists.

Sp_1r™@t) = 0 (mod TV*?)
w—+1
SO ot — Z S 6= = 5p(),

Now, d7(®*1) and dp(*+1) are transformed bases from ey, ..., ex to vy,...,vx and u, ..., ux,
respectively, as follows:

(5z1w) (5p(w)
5z = : = Ségw)vl + ..+ (52(12”)1)1(, spt) = : = 5;b§w)u1 + ..+ 5]5%U)UK.

52211) 5p(w)
Then, we obtain 5z(w+1) = 5}551”“)/@ (i = 1,...,K — 1). Therefore, 67(“*1 is constructed, as

follows.
5 (w+1) _ 5A(1) 5A(1) FIT i
T Dy Jovr+ .o+ 0Dy Jor—1VK—1 + F[T, t]yq1 - vk,

where [T, t],,+1 is homogeneous polynomial set with total-degree w + 1 w.r.t. T', and we have the
following as a candidate solution.

w w
T(w) =t + Z (5]5(1w)/01’l}1 + ...+ Z (5]3%]11/0[(_11)[(_1 + IF[T, t][l,w] ‘UK,
j=1 j=1
where F[T,][) = U}, F[T,];. To compute the approximate GCD of I and (7, we need to determine
¢ =6 + .+ 0q(w) € F[Ty t][1 0 st

w w
’I’(w)(q) =t + Z(Sf)gw)/al’vl +...+ Z&}A?%Uzl/O'K_l’vK_l + q(w) CVEK,
j=1 j=1
To determine the approximate GCD, we must determine ¢(?). The following example shows one
approach to determining each undetermined element ¢ for 1 < i < w..

Examplel

Polynomials F(z,t1,t2) and G(z,t1,t2) having an approximate GCD C/(z,t1,t2) = 3 + (1 + t2 —
2t1 + t12)x + 3 are expressed as

F(x,t,t2) = (2% + (ta® +t1 +t1 — 2)2% — 1) x O(w,t1,t2) + Meps,
Gz, t1,t2) = (2% + (202 —t1 +3)2* — 1) x C(z,t1,t2) + Meps,

where M., is the machine epsilon.

In this example, k = 2 is already known (K = 8). Then, one solution of S}O)z =0isz =r0 = vg;

—0.242535625036333
—0.727606875108999
—2.24840273230668 x 10~ 1°
0.242535625036333
0.242535625036333
—0.485071250072665
—1.32375311946987 x 10~ 1°
—0.242535625036333

101

A candidate of (5r(1)]5q(1):0 = 5;651)/01121 +...+ 51551)/071)7 + 8¢ x vy is

se
0.0713340073 - - - t1 + 0.0285336029 - - - 5 59‘?{3’“
—0.0285336029 - - - t1 + 0.0856008088 - - - £ n—k=l
3.65419500 - - - x 10715¢) — 4.96824803 - - - x 107 1%y :
5.0 _ —0.0713340073 - - - ¢; — 0.0285336029 - - - 1 g vg — 55"
—0.0713340073 - - - t; — 0.0285336029 - - - £ —5fD
—0.0998676103 - - - 1 — 0.185468419 - - - t5 5
477577504 - - - x 10716¢; — 1.10469359 - - - x 10~ 15t mehel
0.0713340073 - - - t1 + 0.0285336029 - - - 5 :
_5fél)

Generally, it is difficult to determine 5¢(!) properly.
However, assuming that cofactors are also not dense or the approximate GCD is monic, sev-
1 _

eral coefficients will be zero. In this example, assume the 1st element is zero, 5qW is o
(0.0713340073636269 t; + 0.0285336029454512 t5) /0.242535625036333 and 67 (1) becomes

0
0.242535625036331¢1
0
0
0
—0.242535625036331¢1 — 0.242535625036334¢2
0
0

It is unlikely that many factors will be close to zero simultaneously, and this can only happen if the result
is correct. Unlike the EZ-GCD method, it is more efficient because it can extract each undetermined
coefficient at each lifting step. So that, “check zeros” is very efficiency.

If the coefficients are dense, Ic(lc(F'), lc(G)) or le(le(ged(F, G))) should be calculated in advance so

that the elements can be determined uniquely.

2.2. Computing approximate GCD

After obtaining cofactors, the approximate GCD is computed by solving and F =
(fma fmflv sy fO)T € F[t]m—‘rl'

fﬂ?—k Ck fm
TR U I I I
; co Jo

fo
This linear equation is solve as following step.

1. Solve Cﬁr?j_L & Jrl(I~7‘) -0 = FO)_ Actually, we utilize the SVD as in the former case.

2. Lifting step: solve Cigll’kﬂ(ﬁ) e = §FW) — Y C’T(:;)Jrl’kﬂ(ﬁ’) x 6¢(*~9)_ This step can
also be solved using SVD.

3. Return c;z® + - - - + cg as an approximate GCD.

102

3. Solve in ill-conditioned cases

In this section, we demonstrate that our method is stable for ill-conditioned cases [8, 5]. On the other
word, we deals with cases where the initial factor is an approximate common factor. In this case, the
EZ-GCD method is unstable since large cancellation errors occur [6].

Example 2 (initial factors have approximate common factor)

Compute the approximate GCD of F' and G, where both polynomials are monic.

F(x,t,te) = (2% + (t2® +t1 +t2 — 2)2% — 1)(z — 1.0003 + 2ty — t1°)C + Meps,
Gz, t1,t2) = (2% + (22> —t1 +3)2? — 1)(z — 1.0005 + t1 + to + t112)C + Meps,
C(z,t1,t2) = x4+ 14ty —2t; +t1%)z + 3.

Initial factors F(°) and G(%) have an approximate common factor (x — 1.0002) with tolerance O(10~?).

Sigular values ofSéO) (F,G)are19.8 > 18.3 > 14.5 > 12.8 >82>44>1.1> 0.6 > 1.5x107° >
1.1x 10716, Because give polynomials are monic, the leading coefficient of cofactors and the approximate
GCD are also monic, respectively.

When w = 1, Adjusting the 1st element of 6r(!) by 2z only, we obtained the following.

0.
—7.25814180424500 x 10~ + 0.176741414005228t5
0.707053518826616t1 + 0.530224242015704t
—6.96526170074208 x 10~ 14 + 6.29774010718620 x 10~ ¢,
—0.176741268890038t; — 0.176741414005196t5
1.42941214420489 x 10~ 15¢; + 6.38378239159465 x 10~ 16¢,
—0.176741268889989¢; — 0.53022409694804 1t
0.176794218725546t1 + 0.883759874841642t,
—1.18932641512970 x 10~ 14, — 7.57727214306669 x 10~ ¢,
—7.25814328778052 x 1078t + 0.353482755476628t

ort) =

The perturbation is ||F(1)G(l) - F(l)G(l)H ~ O(107%) ~ ok /o _1. On the other hand, by adjusting
(1)
gl —

zZ k-1, we obtained the following, It can be confirmed that the solution is not accurate;
~ (1
FU60|| ~ o.

0.

—0.1988511825793107t1 — 0.14357803747786974t2
0.11055165805122452t; — 0.4306512032068328712
0.0002976768351589665t1 + 0.00047951294108034004¢2
0.022318043342197766t1 + 0.14391342019466513t2
—0.7183155936049679 x 10~°t; — 0.00001157099183260457 15
0.02212670015656562t1 — 0.20987748805445672t2
—0.22096310056080598t; + 0.243032215144183%9
0.00007010876634662433t1 + 0.00011293475597320968¢
—0.19880976332099576; 4 0.03323002423516758%2

When w = 2, by lifting step and adjusting the 1st element of 67(?) by z -, we obtained the following

103

vector.

0.
0.353120013467623t22 + 0.177466845429488¢1t5 — 0.000362979823316206t, 2
—0.354747432749536t22 + 0.355659122269873¢t 15 — 0.177830208344029¢; 2
8.84819995 - - - x 107 13¢9% — 4.59634934 - - - x 10~ '2t1t5 + 1.03052288 - - - x 10~ 12¢;2
0.000362669479650586t5% — 0.177466845422696t1t2 4+ 0.000362979818887450¢; 2
—9.08967345 - - - x 10~ B3¢y% — 3.63698827 - - - x 10~ 2t 1ty — 1.36436695 - - - x 107 1%¢,?
—0.176378671991595t22 — 0.000725503949587463t1t2 + 0.177104321289445¢, 2
—0.177413730546595t22 — 0.352031674994445¢t1t5 — 0.354208569999507¢; 2
—9.15635622 - - - x 10713452 4+ 2.71640175 - - - x 107 2¢,¢9 — 1.68760838 - - - x 10~ 13¢,2
—0.000362669478412958t5% + 0.000725503952765407t 1t — 0.177104321291319¢,2

)

Adjusting only v g is not accurate. Therefore, adjusting v and vx_1 in ker § Igo we have the following,

and it obtains the expected solution one . In this case, perturbation becomes || F (Q)G(Q) - F (Q)G@) || ~
Ok, it is better.

The SVD is stable even if the matrix is irregular. Thus, the SVD of S (0) is also stable even if initial
factors have an approximate common factor. On the other hand, a lifting method using the Bezout
matrix is unstable since initial matrix is assumed to be regular [4]. Hence, our method is more stable
and efficient than existing methods.

References

[1] R.Corless, P. Gianni, B. Trager and S. Watt, The singular value decomposition for polynomial systems,
Proc. of ISSAC’95, ACM Press, 1995, 195-207.

[2] S. Gao, E. Kaltofen, J. P. May, Z. Yang and L. Zhi, Approximate factorization of multivariate
polynomials via differential equations, Proc. of ISSAC’04, ACM Press, 2004, 167-174.

[3] M. Ochi, M-T. Noda and T. Sasaki, Approximate greatest common divisor of multivariate polynomials
and its application to ill-conditioned systems of algebraic equations,]. Inform. Proces., 14 (1991),
292-300.

[4] M. Sanuki. Computing multivariate approximate GCD based on Barnett’s theorem, Proc. of Symbolic-
Numeric Computation 2009 (SNC 2009), 2009, 149-157.

[5] M. Sanuki and T. Sasaki, Computing approximate GCDs in ill-conditioned cases, International
Workshop of Symbolic-Numeric Computation 2007 (SNC2007), ACM Press, 2007, 170-179, 25-27.

[6] T.Sasakiand S. Yamaguchi, An analysis of cancellation error in multivariate Hensel construction
with floating-point number arithmetic, Proc. of ISSAC’98, ACM Press, 1998, 1-8.

[7] Z. Zeng and B. H. Dayton, The approximate GCD of inexact polynomials part I: A multivariate
algorithm, Proc. of ISSAC’04, ACM Press, 2004, 320-327.

[8] L. Zhi and M-T. Noda, Approximate GCD of Multivariate Polynomials, Proc. of ASCM2000, World
Scientific, 2000, 9-18.

104

An Optimized Path Planning of Manipulator with Spline
Curves Using Real Quantifier Elimination Based on
Comprehensive Grobner Systems”

Yusuke Shirato?!, Natsumi Oka’, Akira Terui®* and Masahiko Mikawa?®

"Master’s Program in Mathematics, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Japan
?Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
3Institute of Library, Information and Media Science, University of Tsukuba, Tsukuba 305-8550, Japan

Abstract

This paper presents an advanced method for addressing the inverse kinematics and optimal path planning
challenges in robot manipulators. The inverse kinematics problem involves determining the joint angles for a
given position and orientation of the end-effector. Furthermore, the path planning problem seeks a trajectory
between two points. Traditional approaches in computer algebra have utilized Grébner basis computations to
solve these problems, offering a global solution but at a high computational cost. To overcome the issue, the
present authors have proposed a novel approach that employs the Comprehensive Grobner System (CGS) and
CGS-based quantifier elimination (CGS-QE) methods to efficiently solve the inverse kinematics problem and
certify the existence of solutions for trajectory planning. This paper extends these methods by incorporating
smooth curves via cubic spline interpolation for path planning and optimizing joint configurations using shortest
path algorithms to minimize the sum of joint configurations along a trajectory. This approach significantly
enhances the manipulator’s ability to navigate complex paths and optimize movement sequences.

Keywords
Grobner basis, Comprehensive Grobner Systems, Quantifier Elimination, Robotics, Inverse kinematics problem,
Path planning, Trajectory planning

1. Introduction

This paper discusses a method for solving the inverse kinematics problem and the optimal path planning
problem for a robot manipulator. A manipulator is a robot with links corresponding to human arms
and joints corresponding to human joints, and the tip is called the end-effector. The inverse kinematics
problem for manipulators is to find the angle of each joint, given the position and orientation of the
end-effector. The path planning problem is to find a path to move the end-effector between two specified
positions [1].

When operating the manipulator, one needs to solve the inverse kinematics problem (or the path
planning problem, respectively) for the desired end-effector position (or the series of positions, respec-
tively).

Methods of solving inverse kinematics problems for manipulators by reducing the inverse kinematics
problem to a system of polynomial equations and using the Grébner basis has been proposed [2, 3, 4, 5, 6].
Solving the inverse kinematics problem using the Grébner basis computation has an advantage that the
global solution of the inverse kinematics problem can be obtained before the end-effector will actually
be “moved” by simulation or other means. On the other hand, the Grébner basis computation has
the disadvantage of relatively high computational cost compared to local solution methods such as
the Newton method. Furthermore, when solving a path planning problem using the Grébner basis

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024, Tokyo, Japan
"This work was partially supported by JKA and its promotion funds from KEIRIN RACE.

*Corresponding author.

Q terui@math.tsukuba.ac.jp (A. Terui); mikawa@slis.tsukuba.ac.jp (M. Mikawa)

& https://researchmap.jp/aterui (A. Terui); https://mikawalab.org/ (M. Mikawa)

@ 0000-0003-0846-3643 (A. Terui); 0000-0002-2193-3198 (M. Mikawa)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5Y

105

mailto:terui@math.tsukuba.ac.jp
mailto:mikawa@slis.tsukuba.ac.jp
https://researchmap.jp/aterui
https://mikawalab.org/
https://orcid.org/0000-0003-0846-3643
https://orcid.org/0000-0002-2193-3198
https://creativecommons.org/licenses/by/4.0/deed.en

computation, it is necessary to solve the inverse kinematics problem for each point on the path, which
is even more computationally expensive.

The third and fourth authors have also previously proposed methods for solving inverse kinematics
problems using Grobner basis computations [7, 8, 9]. The authors’ contributions in their previous work
[9] are as follows. We have proposed a method for solving the inverse kinematics problem and the
trajectory planning problem of a 3 Degree-Of-Freedom (DOF) manipulator using the Comprehensive
Grobner System (CGS) [10]. In the proposed method, the inverse kinematic problem has been expressed
as a system of polynomial equations with the coordinates of the end-effector as parameters and the CGS
is calculated in advance to reduce the cost of Grobner basis computation for each point on the path. In
addition, we have proposed a method for solving the inverse kinematics problems using the CGS-QE
method [11], which is a quantifier elimination (QE) method based on CGS computations, to certify the
existence of a (real) solution. Furthermore, we have proposed a method to certify the existence of a
solution to the whole trajectory planning problem using the CGS-QE method, where the points on the
trajectory are represented by parameters.

This paper proposes the following method as an extension of the previous work [9].

1. Extension of paths used in path planning problems: while the previous work has used straight
lines, this paper uses smooth curves generated by the cubic spline interpolation passing through
given points. Using a curved path allows us to plan paths that avoid obstacles, for example.

2. Optimization of the joint configuration obtained as the solution to the path planning problem:
when solving the path planning problem, there can be multiple solutions to the inverse kinematics
problem at each point on the path. In this case, the question is which of the solutions for adjacent
points can be connected to minimize the sum of the configurations of the entire sequence of the
joints. In this paper, we reduce this problem to the shortest path problem of a weighted graph
and propose a method to compute the optimal sequence of joint configurations using shortest
path algorithms.

2. Solving path planning problems in 3-DOF manipulators

The manipulator used in this paper is myCobot 280 [12] from Elephant Robotics, Inc. (hereafter referred
to simply as “myCobot”). Although myCobot is a 6-DOF manipulator, we treat it as a 3-DOF manipulator
by operating only the three main joints used to move the end-effector while the remaining joints are
fixed, due to the computational costs for solving the inverse kinematic problem by using the CGS and
the CGS-QE method.

2.1. Formulation of the forward and the inverse kinematics problems

Figure 1 shows the components and the coordinate systems of myCobot. The forward kinematics prob-
lem for myCobot is derived using the modified Denavit-Hatenberg convention (hereafter abbreviated
as “D-H convention”), which is standard in robotics [1]. Let be the Cartesian coordinate system with
the origin at the manipulator’s base, and let (x, y, z) be the coordinates of the end-effector in . Let ; be
the coordinate system with the origin at the joint i. Note that Joint 0 represents the base and Joint 8
represents the end-effector.

Let 6, 65,0, be the configuration of the joints 1, 3, 4, respectively, to be operated in this paper, and
lets; = sin6;, ¢ = cos6; for i = 1,3,4. In the following, for a set of polynomials F = {f,..., f} C
Rey, s1,¢3, 83, €4, S4], The system of polynomial equations f; = -+ = f,, = 0 is denoted by F = 0. In this
case, the inverse kinematics problem is to find the solution ¢y, s, ¢3, 53, ¢4, 54 to the system of polynomial

106

Z8 27
Z/szf—lm 2U72<7—lm7 $62<6—l
24 z3
by by by
x5 <5_l i Ty <4_ly4 T3 <3—gy3
Y2 T1 Zo
Joint 8 .7;22<2—l lej—l Z(?f—l
29 Y1 Yo

Joint 6 Link 3

Link 7 \ Joint 7

Link5 - 0a

Joint 5 (O Joint 4
Link 2

03
Joint 3
Link 1 '\ Link 0

Joint 2 / 01 Joint 0

Joint 1

Link 4

Figure 1: Components and the coordinate systems of myCobot.

equations F = 0 with F = {fi, ..., f¢}, where

f1 = —16918s;s3¢4 — 16918s1c354 — 4360515354 + 4360s1c3¢4 — 110405; 53
—6639¢; + 100x,
16918c;s3¢4 + 16918cc384 + 4360¢; 5354 — 4360c 304 + 11040c; 53
— 6639s; + 100y, (1)
f5 = —16918c3¢4 + 16918s354 — 4360c354 — 4360s3¢4 — 11040c5
— 13156 + 100z,

f4=slz+c%—1, f5=s§+c§—1, f6=s‘%+ci—1.

f2

Note that the system of equations F = 0 has parameters x, y, z in the coefficients.

With our previously proposed method [9], before solving F = 0, we calculate the CGS of (fi, ..., fs)-
Then, for a given end-effector coordinate (x,y,z) = (a, f,y) € R3, determine the feasibility of such a
configuration using the CGS-QE method. If the configuration is feasible, we solve F = 0 numerically
after substituting parameters x, y, z with «a, f, y, respectively, to obtain the inverse kinematic solution.

2.2. Generating trajectories using cubic spline interpolation

In the path planning problem, a finite number of points through which the path passes are given in
advance, and a trajectory is generated on the smooth path passing through these points. In our previous
study, a straight line was used as the path, but in this paper, a path is generated using cubic spline
interpolation [13].

Let (X0, Y0, 20)> (21, y1,21)s (%2, . 22), (x3,¥3,23) be four different points given in R®. For j =
0,1,2, calculate a curve C; passing through (x;, ¥}, z;) and (xj;1, ¥j+1,2j4+1) in the form of a function
(Xj(s), Y(s), Zi(s)) with s € [j, j + 1] as a parameter. In cubic spline interpolation, Xi(s), Y(s), Z;(s) are
cubic polynomials, respectively, satisfying the following conditions.

XM, YD (1)) = (x,y,2), j=0,1,2,
XG+ DY+ 1, ZG+ 1) = (X1, Y15 Zi41)s - F=0,1,2,
XG+0.YG+1),Z/(G+1) = (Xq(G+ 1), Y,G+1),Z/,(G+ 1), j=01,
XPG+0.YG+1),Z27G+ 1) = (X/5HG+ DYLG+ 1. 274G+ 1), j=0,1

(2)

107

Table 1
Test points for the inverse kinematics problem. The unit of the coordinates is [mm].

Test (%05 Yos 20) (e y1521) (%25 Y25 22) (35 ¥35 23)
1 | (=100, -100,100) (0,—150,50) (50,100, 50) (100, 0,0)
2 (-150,-100,150) (0,—100, 100) (100, 50, 50) (100, 100, 0)
3 (~250,0,0) (~150,0,50) (~150,100,150) (250,100, 100)
4 (100, 50, 0) (50,100,150) (—150,150,100) (—150,50, 50)
5 | (100,100,—50) (50,100,0) (—100,100,50) (—150,—50,100)
6 (150, 150, 0) (50,50,100) (=50, -50,100) (—150,—150, 50)

In this paper, in addition to the conditions in eq. (2), we find the natural cubic Spline interpolation that
satisfies
Xy(0)=X3'(3) =Yy (0) =Y5'(3) = Z5'(0) = Z5'(3) = 0. (3)

2.3. Solving the inverse kinematics problem

For the trajectory C obtained in the previous section, we solve the inverse kinematics problem using
the following procedure.

First, using the CGS-QE method, we determine the existence of solutions to the inverse kinematics
problem for each curve C; (j = 0, 1, 2) that constitutes the path to move the end-effector. In eq. (1), replace
x,¥,z in each equation by X(s), Y(s), Zi(s), respectively, to obtain a system of polynomial equations
with s as parameter. Let F/ (s) be the result.

Next, we apply the CGS-QE method to Fj(s) to determine whether the system of equations F/(s) = 0
has real solutions within the parameter s € [j, j + 1]. If F/(s) = 0 has real solutions within the parameter
s € [j,j + 1] (i.e., within s € [0, 3] throughout for s), we calculate the trajectory of the end-effector’s
position for time ¢t. Let T = 3u (where u is a positive integer) and, for time t = 0,...,T, let s = f(t)
where fis a continuous function of [0, T] — [0, 3]. To ensure that the end-effector has no velocity and
acceleration at the beginning and end of the trajectory, we obtain fas a polynomial of the smallest

d ibl i ")=f"1) = = i =g (180 _ s, s
egree possible to satisfy f’(t) = f”(t) = 0 att = 0 and T. Then, we obtain f(t) = 3(75~)
[14].

Finally, we solve the inverse kinematics problem ¢t = 0,...,T. For j = 0,1,2 and t = ju,...,(j + 1)u, the
configuration of the joints is obtained by solving the system of polynomial equations

F/(f(0) = 0. @

Assuming that the time required to solve the inverse kinematics problem (4) at each value of t is constant,
then the computation time for trajectory planning is expected to be proportional to T.

2.3.1. Experimental results

We have implemented the above method and conducted experiments. The implementation of the
inverse kinematics computation was performed as follows: the CGS computation was performed using
an algorithm by Kapur et al. [15] with the implementation by Nabeshima [16] on the computer algebra
system Risa/Asir [17]. The existence of the root of the inverse kinematics problem by the CGS-QE
method was verified using Risa/Asir with accompanying Wolfram Mathematica 13.1 [18] for simplifying
the expression.

We have given the set of test points as shown in Table 1, whose unit of the coordinates is [mm]. The
experiments were conducted in the following environment: Intel Xeon Silver 4210 3.2 GHz, RAM 256
GB, Linux Kernel 5.4.0, Risa/Asir Version 20230315, Wolfram Mathematica 13.1.

Table 2 shows the results of the experiments for T = 10 and T = 50. The comprehensive Grébner
system for eq. (1) uses precomputed values. If any part of the generated spline for the given coordinates
falls outside the feasible region of myCobot, an error is displayed. The average computation time does

108

Table 2
Results of path planning time in seconds.

Test T=10[s] T =50/]s]

1 1.293 7.836
2 1.342 6.940
3 1.296 8.049
4 1.574 7.616
5 1.265 7.155
6 Fail Fail
Average 1.354 7.429

not consider the computation time of tests that resulted in an error. The experimental results show that
the computation time is considered to be approximately proportional to T. In Test 6, it appears that part
of the path exceeds the feasible region, causing the computation to terminate with an error.

2.4. Solving optimal path planning problem

The system of equations (4) may have several different solutions at each time t. For time ¢t = 0,..., T,
suppose that there exist k;; solutions to the configuration 6; of joint j (j = 1,3,4) at ¢ such that

ki

9}}), ...,stt”t). The sum of the configuration changes of the joints from time ¢ = 1 to T differs de-
k.

pending on the choice of the solution from 9](}), s G;JJ 2 at each time ¢. In order to move each joint more

smoothly, it is desirable to select a solution that minimizes the sum of the configuration changes of
the joints on the path. For this purpose, for j = 1,3, 4, we define a weighted graph G; = (V}, E;), where

V= {Gj(’];) |t €{0,..., T}k € {1,.... k; 3} is the set of vertices corresponding to the joint configuration
at each time ¢, and E; = {(91(’];1), 91(1;1)1) | 1 <ky,ky <Kkjyt €4{0,...,T — 1}} is the set of edges connecting

the vertices at adjacent times. Then, in G;, we reduce the problem of finding the optimal path to the

one of finding the shortest path from 9})]8) to 0}?. We have solved the shortest path problem using the

following methods.

Method 1 Fort =0,...,T — 1, find the sequence of joint configurations {Oj(’ltc) |t =0,...,T} satisfying

the minimum distance between adjacent joint configurations such that min{|9j(,1;1) - 9](]:?3“ 1<
kl < kt,kj,t’ 1< k2 < kt-‘rl,kj’t_,_l }

Method 2 In the graph G, find the shortest path starting at 9]-(,]8) (k = 1,...,kjp) using the Dijkstra

method [19], then find the shortest path with the minimum length among Gjs.

The arithmetic complexity of each method above is estimated as follows. Let T be the number of points
in the trajectory, and assume that the number of solutions to the inverse kinematics problem at each
point is constant at d. The complexity of Method 1 is O(Td). On the other hand, the complexity of
Method 2, using a binary heap, is estimated to be O(Td? log(Td)).

2.4.1. Experimental results

We have implemented the above method and conducted experiments. The implementation of each
procedure was based on an implementation [20] in the Python programming language. The experiments
were conducted in the following environment: A virtual machine with RAM 13.2 GB, Ubuntu 22.04.3 LTS,
Python 3.10.2 on VMware Workstation 16 Player, on the host environment with Intel Core i7-1165G7,
RAM 16 GB, Windows 11 Home.

The test points are composed of a total of T = 15 points, obtained by dividing each segment of the
cubic spline curve passing through each point in Table 3 into 5 parts. The number of solutions to the
inverse kinematics problem at each point in each test segment is d = 4.

109

Table 3
Test points for the optimal path planning problem. The unit of the coordinates is [mm].

Test (%05 Yos 20) (e y1521) (%25 Y2, 22) (35 ¥35 23)
1 | (=100, -100,100) (0,—150,50) (50,100, 50) (100, 0,0)
2 | (=150,-100,150) (0,—100,100) (100, —50,50) (100, 100, 0)
3 (~250,0,0) (~150,0,50) (~150,100,150) (250,100, 100)
4 (100, 50, 0) (50,100,150) (—150,150,100) (—150,50,50)
5 (100,100, -50) (50,100,0) (—100,100,50) (—150,—50,100)

Table 4
The sum of the joint variations [rad].

Test Method 1 [rad] Method 2 [rad]

1 8.3142 4.4013
2 11.5985 9.8986
3 15.0005 13.6731
4 8.5828 6.3277
5 7.1897 5.7108
Average 10.1371 8.0023

Table 5
Computing time of the optimal path computation [107%s].

Test Method 1 [107%s] Method 2 [107%s]

1 1.96 39.4
2 2.16 42.8
3 2.90 33.0
4 2.90 40.1
5 4.44 36.4
Average 2.87 31.3

Table 4 shows the sum of the joint variations [rad]. From the average values of each result, we see
that Method 2 (with the Dijkstra method) reduces the total amount of joint rotation.

Table 5 shows the computation time for each method. From the average computation times, it
can be seen that Method 1 is approximately 10 times faster than Method 2. Compared to the overall
computation time for route planning shown in Table 2, the computation time for optimal route selection
is considered sufficiently short, even for using Method 2 (Dijkstra method).

3. Concluding remarks

We have proposed a method for trajectory planning of robot manipulators using computer algebra,
where the path is provided by cubic spline interpolation. Furthermore, we have proposed a method to
optimize the joint configuration of the manipulator by solving the shortest path problem in a weighted
graph. The experimental results have shown that the proposed methods can be used to plan the
trajectory of the manipulator and optimize the joint configuration.

Future work includes the following.

1. Regarding path planning using cubic splines, it has been pointed out that some parts of the
generated path may deviate from the feasible region. In the future, it is necessary to consider
methods that ensure the generated trajectory stays within the feasible region while meeting given
constraints, such as avoiding obstacles. In response to this, the authors are currently proposing a
path-planning method that uses Bézier curves to generate trajectories that remain within the
feasible region [21].

110

2. Instead of representing the trajectory on the path, it is desired to express any point on the path

using parameters and ensure the solution to the inverse kinematics problem for that point. For
linear paths, a method has already been proposed by the authors [9], and this will be extended to
curves given by cubic splines.

. Regarding optimal path planning using shortest path calculations on graphs, we have used an

implementation of Dijkstra’s algorithm using a binary heap in this paper. However, one method
to further improve computational efficiency is to use Dijkstra’s algorithm with a Fibonacci
heap [22]. For example, using an implementation of Dijkstra’s algorithm with a Fibonacci heap
can be considered to improve computational efficiency.

4. To extend the proposed method to a 6-DOF manipulator. Although myCobot is operated with

3 Degree-Of-Freedom in this paper, it originally had 6 Degree-Of-Freedom, so it is desirable to
implement methods for motion planning and path planning with 6 Degree-Of-Freedom.

References

(1]

B. Siciliano, O. Khatib, Springer Handbook of Robotics, 2nd ed., Springer, 2016. doi:10.1007/
978-3-319-32552-1.

[2] J.-C. Faugére, J.-P. Merlet, F. Rouillier, On solving the direct kinematics problem for parallel robots,

Research Report RR-5923, INRIA, 2006. URL: https://hal.inria.fr/inria-00072366.

C. M. Kalker-Kalkman, An implementation of Buchbergers’ algorithm with applications to robotics,
Mech. Mach. Theory 28 (1993) 523-537. d0i:10.1016/0094-114X(93)90033-R.

S. Ricardo Xavier da Silva, L. Schnitman, V. Cesca Filho, A Solution of the Inverse Kinematics
Problem for a 7-Degrees-of-Freedom Serial Redundant Manipulator Using Grébner Bases Theory,
Mathematical Problems in Engineering 2021 (2021) 6680687. doi:10.1155/2021/6680687.

T. Uchida, J. McPhee, Triangularizing kinematic constraint equations using Grébner bases for
real-time dynamic simulation, Multibody System Dynamics 25 (2011) 335-356. doi:10.1007/
$11044-010-9241-8.

T. Uchida, J. McPhee, Using Grobner bases to generate efficient kinematic solutions for the dynamic
simulation of multi-loop mechanisms, Mech. Mach. Theory 52 (2012) 144-157. doi:10.1016/j .
mechmachtheory.2012.01.015.

N. Horigome, A. Terui, M. Mikawa, A Design and an Implementation of an Inverse Kinematics Com-
putation in Robotics Using Grobner Bases, in: A. M. Bigatti, J. Carette, J. H. Davenport, M. Joswig,
T. de Wolff (Eds.), Mathematical Software — ICMS 2020, Springer International Publishing, Cham,
2020, pp. 3—-13. doi:10.1007/978-3-030-52200-1_1.

S. Otaki, A. Terui, M. Mikawa, A Design and an Implementation of an Inverse Kinematics Compu-
tation in Robotics Using Real Quantifier Elimination based on Comprehensive Grébner Systems,
Preprint, 2021. doi:10.48550/arXiv.2111.00384, arXiv:2111.00384.

M. Yoshizawa, A. Terui, M. Mikawa, Inverse Kinematics and Path Planning of Manipulator Using
Real Quantifier Elimination Based on Comprehensive Grobner Systems, in: Computer Algebra in
Scientific Computing. CASC 2023, volume 14139 of Lecture Notes in Computer Science, Springer,
2023, pp. 393-419. doi:10.1007/978-3-031-41724-5_21.

V. Weispfenning, Comprehensive Grobner Bases, J. Symbolic Comput. 14 (1992) 1-29. doi:10.
1016/0747-7171(92)90023-W.

R. Fukasaku, H. Iwane, Y. Sato, Real Quantifier Elimination by Computation of Comprehensive
Grobner Systems, in: Proceedings of the 2015 ACM on International Symposium on Symbolic and
Algebraic Computation, ISSAC ’15, Association for Computing Machinery, New York, NY, USA,
2015, pp. 173-180. doi:10.1145/2755996.2756646.

Elephant Robotics Co., Ltd., myCobot 280 M5, 2023. URL: https://www.elephantrobotics.com/
mycobot-280-m5-2023, accessed 2024-05-04.

G. Farin, Curves and Surfaces for CAGD: A Practical Guide, The Morgan Kaufmann Series in Com-
puter Graphics, 5th ed., Morgan Kaufmann, 2002. doi:10.1016/B978-1-55860-737-8.X5000-5.

111

http://dx.doi.org/10.1007/978-3-319-32552-1
http://dx.doi.org/10.1007/978-3-319-32552-1
https://hal.inria.fr/inria-00072366
http://dx.doi.org/10.1016/0094-114X(93)90033-R
http://dx.doi.org/10.1155/2021/6680687
http://dx.doi.org/10.1007/s11044-010-9241-8
http://dx.doi.org/10.1007/s11044-010-9241-8
http://dx.doi.org/10.1016/j.mechmachtheory.2012.01.015
http://dx.doi.org/10.1016/j.mechmachtheory.2012.01.015
http://dx.doi.org/10.1007/978-3-030-52200-1_1
http://dx.doi.org/10.48550/arXiv.2111.00384
http://dx.doi.org/10.1007/978-3-031-41724-5_21
http://dx.doi.org/10.1016/0747-7171(92)90023-W
http://dx.doi.org/10.1016/0747-7171(92)90023-W
http://dx.doi.org/10.1145/2755996.2756646
https://www.elephantrobotics.com/mycobot-280-m5-2023
https://www.elephantrobotics.com/mycobot-280-m5-2023
http://dx.doi.org/10.1016/B978-1-55860-737-8.X5000-5

[14]

[15]

[16]

[22]

K. M. Lynch, F. C. Park, Modern Robotics: Mechanics, Planning, and Control, Cambridge University
Press, 2017.

D. Kapur, Y. Sun, D. Wang, An efficient method for computing comprehensive Grébner bases, J.
Symbolic Comput 52 (2013) 124-142. doi:10.1016/j.jsc.2012.05.015.

K. Nabeshima, CGS: a program for computing comprehensive Grébner systems in a polynomial ring
[computer software], 2018. URL: https://www.rs.tus.ac.jp/~nabeshima/softwares.html, accessed
2024-05-04.

M. Noro, T. Takeshima, Risa/Asir — A Computer Algebra System, in: ISSAC '92: Papers from the
International Symposium on Symbolic and Algebraic Computation, Association for Computing
Machinery, New York, NY, USA, 1992, pp. 387-396. doi:10.1145/143242.143362.

Wolfram Research, Inc., Mathematica, Version 13.1 [computer software], 2022. URL: https://www.
wolfram.com/mathematica, accessed 2024-05-04.

E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1 (1959) 269-271.
doi:10.1007/BF01386390.

simonritchie, Compute the shortest path of a graph using Dijkstra method and Python (in Japanese),
2023. URL: https://qiita.com/simonritchie/items/216eae753fc393da52af, accessed: 2024-05-04.

R. Hatakeyama, A. Terui, M. Mikawa, Towards Trajectory Planning of a Robot Manipulator with
Computer Algebra using Bézier Curves, in: SCSS 2024 Work-in-progress Proceedings, Open
Publishing Association, 2024. To appear.

S.-L. Guo, J. Duan, Y. Zhu, X.-C. Li, T.-W. Chen, Improved dijkstra algorithm based on fibonacci heap
for solving the shortest path problem with specified nodes, in: Computer Science and Artificial
Intelligence: Proceedings of the International Conference on Computer Science and Artificial
Intelligence (CSAI2016), World Scientific, 2017, pp. 52—-61. doi:10.1142/9789813220294_0008.

112

http://dx.doi.org/10.1016/j.jsc.2012.05.015
https://www.rs.tus.ac.jp/~nabeshima/softwares.html
http://dx.doi.org/10.1145/143242.143362
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
http://dx.doi.org/10.1007/BF01386390
https://qiita.com/simonritchie/items/216eae753fc393da52af
http://dx.doi.org/10.1142/9789813220294_0008

Reasoning about the Embedded Shape of a Qualitatively
Represented Curve*

Kazuko Takahashi®

'Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Japan

Abstract

This paper addresses the problem of embedding curves, represented qualitatively as sequences of primitive
segments, onto a two-dimensional plane. These primitive segments are directed curved segments with intrinsic
direction and convexity. We define a symbolic expression to each segment, and by connecting these segments, we
can derive a symbolic expression that represents an abstract shape of a smooth continuous curve. There are an
infinite number of embeddings of the derived curve on a two-dimensional plane, since precise information such as
coordinates are missing. However, for some shape of curves, any embedding forms a spiral, which is undesirable
when the curve represents the boundary of a natural object. We propose a method for judging whether it is
possible to draw a curve not in a spiral form on a two-dimensional plane by checking the segment orientation.

Keywords

qualitative spatial reasoning, curved line, embedding on a plane

1. Introduction

Qualitative Spatial Reasoning (QSR) is a method that gives a symbolic expression to a spatial object or
the relationships between objects, focusing on a specific aspect of the spatial data, and that conducts
reasoning on this expression [1, 2, 3]. The approach requires no big data and has less computational
complexity, since it does not treat the numerical data. It also enables reasoning that suits human
recognition. The focused aspects involve relative location, direction, size, distance of objects, the shapes
of an object, and so on. Systems that combine more than one aspect are also proposed.

Previously, we proposed a qualitative representation that describes the outline of a curve as a sequence
of segments [4]. There, we defined the connection rule of curved primitive segments to obtain a smooth
continuous curve. On the other hand, there are an infinite number of embeddings of the obtained curve
on a two-dimensional plane, since precise information such as coordinates are missing. If an embedding
forms a spiral, it is not realistic as a boundary of an object in nature.

In this paper, we discuss whether there exists a way to embed a curve so that it does not form a spiral
and show the judgment method by introducing the reduction rules on the sequence of orientations of a
curve.

This paper is organized as follows. In Section 2, we describe fundamental concepts. In Section 3,
we discuss the embedding of a curve in a qualitative representation on a two-dimensional plane. In
Section 4, we propose the method of judging whether there exists an embedding that does not form a
spiral. In Section 5, we compare our work with the related works. Finally, in Section 6, we show our
concluding remarks.

SCSS 2024: 10th International Symposium on Symbolic Computation in Software Science, August 28-30, 2024, Tokyo, Japan

"You can use this document as the template for preparing your publication. We recommend using the latest version of the
ceurart style.

*Corresponding author.

& ktaka@kwansei.ac.jp (K. Takahashi)

&} https://ist ksc kwansei.ac jp/~ktaka/LABO/ (K. Takahashi)

@ 0000-0002-5572-7747 (K. Takahashi)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

113

mailto:ktaka@kwansei.ac.jp
https://ist.ksc.kwansei.ac.jp/~ktaka/LABO/
https://orcid.org/0000-0002-5572-7747
https://creativecommons.org/licenses/by/4.0/deed.en

2. Fundamental Concepts

Let CURVES be a set of directed curved segments with a unique direction and curvature on a two-
dimensional plane. For X € CURVES, we represent the qualitative shape of X focusing on its intrinsic
direction and convexity, ignoring the precise size and the exact curvature.

Let S, = {n,s}, S, = {e,w}, Conv = {cx, cc} and Dir = S, U S},. The symbols n, s, e and w
indicate the north, south, east and west directions, respectively, and cz and cc indicate convex and
concave, respectively. The direction exactly in the middle between north and south (east and west) is
regarded as either n or s (e or w, resp.). Straight lines are not considered. For X € CURVES, X =
(V, H,C) is said to be the qualitative representation of X where V € S,, H € Sy, and C' € Conv. V, H
and C' show the vertical direction, horizontal direction and the convexity of X. For X, Y € CURVES,
let X = (V,H,C)and Y = (V', H',C") be qualitative representations of X and Y, respectively. We
define the relation ~ on CURVES as follows: X ~ Y if V =V’ , H = H' and C = C’. Then ~ is an
equivalence relation on CURVES. As a result, CURVES is classified into eight equivalence classes
which are jointly exhaustive and pairwise disjoint. We denote the set of these equivalence classes as S,
that is, S = CURVES/ ~. Then, X € CURVES is mapped to X € S.

In this paper, a smooth continuous curve without a self-intersection is called an scurve. We connect
multiple segments in S to create an scurve.

For X € &, its initial and terminal points are indicated by init(X) and term(X), respectively. For
X,Y € 8§, if an scurve is obtained by considering that init(Y") and term(X) are identical, then X and
Y are said to be directly connectable, and the outcome of the connection is represented as X - Y. For
X,Y € §,if X =Y, then they are directly connectable and the result is regarded as a single segment
without a cusp, since the precise curvatures of X and Y are ignored. When X and Y are directly
connectable, and X # Y, the connection of X and Y create inflection or extremum points via direct
connections.

For Xi,...,X,, € S (n > 2), if for each j suchthat 1 < j < n — 1, X, and X, are directly
connectable, then we obtain an scurve by directly connecting X; and X1, and the outcome of the
connections is represented as X -. . .- X,. Asaresult, scurve is a sequence of qualitative representations
of curved segments.

For example, X = (n,e,cx) and Y = (n,e,cc) are directly connectable (Figure 1(a)), and X =
(n,e,cx) and Y = (s, e, cx) are directly connectable (Figure 1(b)). On the other hand, X = (n, e, cx)
and Y = (s,e,cc) are not, since a cusp is created at their connection (Figure 1(c)); but if we insert
Z = (s,e,cx) between X and Y, then we get an scurve X - Z - Y (Figure 1(d)).

2N 2o
7N T\ \,
(a) (b) (c) (d)

Figure 1: Connection of segments.

3. Embedding on a Two-Dimensional Plane

In the following, ‘embedding of X’ means an assignment of one X € CURVES to X € S. It is defined
as follows:

1. Let X € CURVES be a curved segment on a two-dimensional plane of which X € § is its
qualitative representation. (Note that there are infinite number of X’s.) Then X is said to be
an embedding of X. init(X) and term(X) represent the locations of the initial point and the
terminal point of X on a two-dimensional plane, respectively.

114

2. Let X7 -...- X, beanscurve X; -...- X, and X; (1 < ¢ < n)be an embedding of X;. For all
i such that 1 <i < n — 1, if term(X;) and init(X,; 1) are located in the same position, then
X -...- X, is said to be an embedding of an scurve X; - ... - X,,.

For example, Figure 2 shows two kinds of embeddings of X - Y where X = (n,e,cz)and Y =
(s, e, cx). The relative directions of the locations of term/(Y') regarding init(X) are (n, e) and (s, €)
in Figure 2(a) and Figure 2(b), respectively.

If an embedding of an scurve forms a spiral, it is not desirable, when an scurve corresponds to a
boundary of an actual object. However, there exists an scurve which cannot be drawn in a non-spiral
form, no matter how it is drawn. Here, we introduce a concept of an orientation of an scurve on a
symbolic expression, and discuss the shape of its embedding by checking the orientation. We show
how to determine whether there exists an embedding that does not form a spiral on a two-dimension
plane, for a given scurve. For this purpose, we introduce a concept of open/closed embedding.

For X,Y € S, let C be an embedding of an scurve from X to Y on a two-dimensional plane, where
X and Y be embeddings of X and Y, respectively. And C’ be an infinite-length curve that is obtained
by extending C' in both directions in a manner such that the curvature of X at ¢nit(X) and that of Y’
at term(Y") are preserved. If C’ has a self-intersection point, then the embedding is said to be closed,
otherwise, it is open. Figure 3 shows open (a) and closed (b) embeddings of an scurve X - 7 - Y where
X = (n,e,cx), Z = (s,e,cx) and Y = (s, w, cc).

Y ‘ -X \
)/’ N7 N L)
' / T Y
)

(a (b)

(a) (b)
Figure 2: Different embeddings of X - Y. Figure 3: Open/closed embedding of X - 7 - Y.

If there is an open embedding of an scurve, then the scurve is said to be admissible. The empty
sequence € is considered to be admissible.

4. Admissibility

4.1. Reduction

For X € &, its orientation is defined either as clockwise (+) or anti-clockwise (—). Moreover, the
orientation of an scurve is defined as a sequence of orientations of the segments that configure it.

e For X € S,
orn(X) =" +"iff X = (n,e,cx), (s,e,cx), (s,w,cc) or (n,w,cc); orn(X) =" —"iff X =
(s,w,cx), (s,e,cc), (n,e,cc)or (n,w, cx).

« For X1,...,X,, €S,

orn(Xy ... Xp) =orn(Xy)...orn(X,).
We define the function inv on the set {+, —} that assigns the opposite orientation: inv(+) = — and
inv(—) = +.
For an scurve p, the difference of the numbers of + and — that appear in orn(p) is said to be rotation
difference of p.

Some specific subsequences in the orientation of an scurve do not affect the judgment of its admis-
sibility. We consider a shorter sequence by removing these parts. There are two reduction rules: the

115

tyd (12) A T e ()
oA ™ \ / closed }_‘ losed +

(@) (b)

Figure 4: Examples in which admissibility is not preserved.

subsequence + — + (or — + —) is reduced to + (or —, resp.), and the subsequence + + —— (or — — ++)
is reduced to the empty sequence e.
[Reduction rules]

Let 01 and 02 be sequences of orientations and s, s2, s3, 54 € {4, —}.

(r1) If s; = s3 = inv(s2), then 01515253079 is reduced to o151 09.

(r2) If s1 = s9 = inv(s3) = inv(sy) and (01,09 = € or 01, 09 # €), then 015152835409 is reduced to
0109.

For a sequence of orientations o, a sequence of orientations obtained by applying the reduction rules
as far as possible is said to be a reduced form of o.

Note that the condition on ¢; and o9 in (r2) are necessary. It means that if only one of o; and o9
is an empty sequence, then admissibility of p is not always the same with that of p’. We show two
examples that illustrate this situation.

1. Assume that p = X - ... - Xg where orn(p) = + + + + — — — + +. If we reduce the part
— — ++ toobtainp’ = Xy - ... X5, then orn(p’) = + + + + —. In this case, p is admissible
whereas p’ is not (Figure 4(a)).

2. Assume that p = X - ... X7 where orn(p) = + + + + + — —. If we reduce the part + + ——
to obtain p’ = X - Xo - X3, then orn(p’) = + + +. In this case, p is not admissible whereas p’ is
(Figure 4(Db)).

For any sequence of orientations o and any of its reduced form, the following properties hold, which
are easily proved.

Proposition 1. 1. (termination)
The reduction procedure terminates.
2. (rotation difference preservation)
The rotation difference is preserved in the reduction.
3. (reduced form)
Let s be either + or —. A reduced form is 010903 where oy is a nonempty sequence of s, and o1 and
o3 are the sequences of at most two inv(s).

Generally, a reduced form of o is not unique. For example, when 0 = + + + — — + ——, if we apply
(r2) first, then we get the reduced form €; whereas if we apply (r1) first, then we get the reduced form
+—. However, admissibility of these reduced forms are the same.

In addition to Proposition 1, reduction has a significant property of preserving admissibility.

Theorem 2 (admissibility preservation). An scurve is admissible if and only if its reduced form is
admissible.

116

4.2. Judgment of Admissibility

For a given scurve p, we determine its admissibility by checking its orientation.

Letp = X; -...- X, be areduced form of a given scurve, and k be its rotation difference.

Generally it is known that if the rotation angle of a curve is greater than or equal to 2, then it forms
a spiral and may have a self-intersection point on a two-dimensional plane. If £ > 4, the rotation angle
of an scurve is greater than or equal to 27; in this case, p is not admissible. Therefore, it is enough to
investigate the admissibility in the cases for £ < 3.

When n is more than eleven, & > 4 always holds, since there exist at most two segments at each end
of a sequence that have the opposite orientation to those in the center of the sequence. It follows that
any embedding of p is closed, and thus p is not admissible. When n is less than twelve, we investigate
the admissibility of all possible orientations for scurves [5, 6]. Due to the symmetry of the orientations
+ and —, and that of the order of the sequence, symmetric orientations need not be investigated. The
introduction of the reduction significantly decreases the number of sequences to be checked, since the
length is shortened and the reduced forms are restricted as is shown in Proposition 1. For example, we
should examine four cases when n is six, and only one case when it is eleven. And we conclude that for
any scurve, its admissibility can be determined by the sequence of its orientation, and we have gotten
the following theorem.

Theorem 3. p is admissible if and only if k < 3, where k is the rotation difference of the orientation of p.

5. Related Works

Embedding of curves and their intersection are frequently handled in geometry or graph theory. In
geometry, shapes with strict curvatures are considered; and in graph theory, connectivity between
nodes is the main target to be discussed and convexity of an edge is out of focus. The QSR approach
taken in this paper treats these issues from yet another viewpoint; it is suitable for human’s recognition
of abstract shapes and reasoning on an abstract level.

Although there have been lots of research on QSR, few of them focus on shapes, especially on curves.
Several systems in these works divide the boundary of an object into segments and represent its shape
by lining up the symbols corresponding to the segments [7, 8, 9]. Segments are usually equipped with
information of its shape related to their subsequent segments. Additional information such as relative
length and angle may be added to each segment [10, 11].

Several QSR systems have been proposed which focus on relative directions. Moratz et al. proposed
OPRA that represents the relative direction of spatial entities as a ternary relation [12, 13]. In OPRA, a
primitive object is considered as a vector with its initial point and terminal point, which has a similar
feature with our formalization. However, the primitive object in OPRA does not have a convexity as an
attribute, which means that OPRA cannot be applied to the generation of a smooth curve by connecting
objects.

6. Conclusion

In this paper, we have discussed the treatment of curves in a symbolic expression, focusing on the
admissibility of the curves. In conclusion, we have shown that the admissibility of a curve can be
determined by its orientation sequence: if the rotation difference is less than or equal to three, the curve
is admissible. We have introduced reduction rules that significantly decreases the number of sequences
to be checked. This framework provides a novel approach for reasoning about the shapes of curves on
a two-dimensional plane, ensuring that they do not form spirals.

It is to be considered to improve the reasoning system by relaxing the conditions on the application
of the reduction rules. In addition, we are considering formalization of the obtained result as a QSR
system, and also verification using proof assistant systems to certify the proofs.

117

References

(1]
(2]
(3]

(9]
[10]
[11]
[12]

[13]

A. Cohn, J. Renz, Qualitative spatial representation and reasoning, in: Handbook of Knowledge
Representation, Elsevier, 2008.

J. Chen, A. Cohn, D. Liu, S. Wang, J. Ouyang, Q. Yu, A survey of qualitative spatial representations,
The Knowledge Engineering Review 30 (2013) 106-136.

M. Sioutis, D. Wolter, Qualitative spatial and temporal reasoning: current status and future
challenges, in: Proceedings of the 30th International Joint Conference on Artificial Intelligence,
2021, pp. 4594-4601.

Y. Taniuchi, K. Takahashi, Spatial representation and reasoning about fold strata: A qualitative
approach, in: 15th International Conference, ICAART 2023, Revised Selected Papers, 2024, pp.
244-266.

K. Takahashi, Qualitative treatment of curves and judgment for their self-intersectionality (in
japanese), in: IPS], SIG-PRO-149, 2024.

K. Takahashi, Qualitative formalization of a curve on a two-dimensional plane, in: The 16th
International Conference on Spatial Information Theory (COSIT 2024), to appear.

M. Leyton, A process-grammar for shape, Artificial Intelligence 34 (1988) 213-247.

M. Tosue, K. Takahashi, Towards a qualitative reasoning on shape change and object division, in:
14th International Conference on Spatial Information Theory (COSIT 2019), 2019, pp. 7:1-7:15.
A. Galton, R. Meathrel, Qualitative outline theory, Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (1999) 1061-1066.

L. M. Cabedo, L. G. Abril, F. V. Morente, Z. Falomir, A pragmatic qualitative approach for
juxtaposing shapes, Journal of Universal Computer Science 16 (2010) 1410-1424.

Z. Falomir, A. Pich, V. Costa, Spatial reasoning about qualitative shape compositions, Annals of
Mathematics and Artificial Intelligence 88 (2020) 589-621.

R. Moratz, Representing relative direction as a binary relation of oriented points, in: Proceedings
of the 17th Eureopean Conference on Artificial Intelligence, ECAT’2006, 2004, pp. 407-411.

T. Mossakowski, R. Moratz, Qualitative reasoning about relative direction of oriented points,
Artificial Intelligence 180-181 (2012) 34-45.

Acknowledgments

This research is supported by JSPS Kakenhi 24K15096.

118

